1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 1 & 2 & 1 \cr 3 & 2 & 6 \cr } } \right]$$ and A$$_{ij}$$ are cofactors of the elements a$$_{ij}$$ of A, then $${a_{11}}{A_{11}} + {a_{12}}{A_{12}} + {a_{13}}{A_{13}}$$ is equal to

A
8
B
6
C
4
D
0
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 1\end{array}\right]$ and $A^2-5 A-6 I=0$, then $A^{-1}=$

A
$\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ -2 & -4\end{array}\right]$.
B
$\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & 4\end{array}\right]$
C
$\frac{1}{6}\left[\begin{array}{cc}-1 & 5 \\ 2 & -4\end{array}\right]$
D
$\frac{1}{6}\left[\begin{array}{cc}1 & 5 \\ 2 & -4\end{array}\right]$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cofactors of the elements of the first column of the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$ are

A
$0,-7,2$
B
$-1,3,-2$
C
$0,-8,4$
D
$0,-1,1$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The matrix $$A=\left[\begin{array}{rrr}a & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$$ is not invertible only if $$a=$$

A
17
B
$$-$$16
C
$$-$$17
D
16
MHT CET Subjects
EXAM MAP