1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$$, then $$B^{-1} A^{-1}=$$

A
$$\left[\begin{array}{rr}-2 & -3 \\ -7 & 11\end{array}\right]$$
B
$$\left[\begin{array}{rr}2 & -3 \\ -7 & 11\end{array}\right]$$
C
$$\left[\begin{array}{rr}2 & 3 \\ 7 & 11\end{array}\right]$$
D
$$\left[\begin{array}{cc}-2 & -3 \\ -7 & -11\end{array}\right]$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The sum of the cofactors of the elements of second row of the matrix $$\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 0 & 1 \\ 5 & 2 & 1\end{array}\right]$$ is

A
5
B
$$-$$23
C
3
D
23
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{rrr}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$$ and $$A^{-1}=\left[\begin{array}{rrr}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]$$, then the values of $$\alpha$$ and $$\beta$$ are, respectively.

A
$$-15,-5$$
B
$$-15,5$$
C
$$15,-5$$
D
$$15,5$$
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A$ and $B$ are square matrices of order 3 such that $|A|=2,|B|=4$, then $|A(\operatorname{adj} B)|=\ldots$

A
16
B
8
C
64
D
32
MHT CET Subjects
EXAM MAP