1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is

A
$\left[\begin{array}{ccc}0 & 8 & -4 \\ -1 & 3 & 2 \\ 1 & -7 & 2\end{array}\right]$
B
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & -2 \\ 1 & -7 & 2\end{array}\right]$
C
$\left[\begin{array}{ccc}0 & 8 & -4 \\ 1 & -3 & 2 \\ -1 & 7 & -2\end{array}\right]$
D
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & 2 \\ -1 & -7 & 2\end{array}\right]$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is

A
6
B
$-$14
C
14
D
$-$6
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}_2$, (where $\mathrm{I}_2$ is unit matrix of order 2), then

A
$x=\frac{-1}{11}, y=\frac{2}{11}$
B
$x=\frac{1}{11}, y=\frac{-2}{11}$
C
$x=\frac{-1}{11}, y=\frac{-2}{11}$
D
$x=\frac{1}{11}, y=\frac{2}{11}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Suppose A is any $3 \times 3$ non-singular matrix and $(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-5 \mathrm{I})=0$ where $\mathrm{I}=\mathrm{I}_3$ and $\mathrm{O}=\mathrm{O}_3$. Here $\mathrm{O}_3$ represent zero matrix of order 3 and $\mathrm{I}_3$ is an identity matrix of order 3 . If $\alpha A+\beta A^{-1}=4 I$, then $\alpha+\beta$ is equal to

A
13
B
7
C
12
D
8
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12