If $$\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos (2 B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$$, then the value of $$B$$ is
Let $$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1\end{array}\right], B=\left[\begin{array}{c}6 \\ 11 \\ 0\end{array}\right]$$ and $$X=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$$, if $$\mathrm{AX}=\mathrm{B}$$, then the value of $$2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}$$ is
If $$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$$, then the inverse of $$\left(2 A^2+5 A\right)$$ is
If $$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 3\end{array}\right]$$ and $$B=\left[\begin{array}{ll}2 & 3 \\ 1 & 2 \\ 1 & 2\end{array}\right]$$, then $$(A B)^{-1}=$$