If the matrix $$\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$$ and $$\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}$$, when $$I$$ is a unit matrix of order 2 , then the value of $$2 x+3 y$$ is
If $$\mathrm{A}=\left[\begin{array}{ll}\mathrm{i} & 1 \\ 1 & 0\end{array}\right]$$ where $$\mathrm{i}=\sqrt{-1}$$ and $$\mathrm{B}=\mathrm{A}^{2029}$$, then $$\mathrm{B}^{-1}=$$
If $$P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and $$|A|=4$$, then value of $$\alpha$$ is
Let $$\omega \neq 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$$ where each of $$a, b$$ and $$c$$ is either $$\omega$$ or $$\omega^2$$, then the number of distinct matrices in the set $$\mathrm{S}$$ is