1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A$ is a matrix of order 2 and $I$ is the identity matrix of order 2 such that $A^2-4 A+3 I=0$ then $(A+3 I)^{-1}=$

A

$\frac{\mathrm{A}}{24}-\frac{7}{24} \mathrm{I}$

B

$\frac{\mathrm{A}}{21}-\frac{7}{21} \mathrm{I}$

C

$\frac{7 \mathrm{I}}{24}-\frac{1}{24} \mathrm{~A}$

D

A-3I

2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Matrix A is non-singular matrix and $(A-3 I)(A-5 I)=0$, then $\frac{15}{8} A^{-1}=\ldots \ldots$

A

$\mathrm{I}-8 \mathrm{~A}$

B

$2 \mathrm{I}-\frac{1}{15} \mathrm{~A}$

C

$\mathrm{I}-\frac{1}{8} \mathrm{~A}$

D

$8 \mathrm{I}-15 \mathrm{~A}$

3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]$ and A .adj $\mathrm{A}=\mathrm{AA}^{\mathrm{T}}$, then $5 \mathrm{a}+\mathrm{b}=$

A
7
B
9
C
13
D
5
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]_{3 \times 3}$, then $A^{-1}=$

A
A
B
$\mathrm{A}^2$
C
$\mathrm{A}^3$
D
$\mathrm{A}^4$
MHT CET Subjects
EXAM MAP