If $A+B=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ where $A$ is symmetric and $B$ is skew-symmetric matrix, then the matrix $\left(A^{-1} B+A B^{-1}\right)$ at $\theta=\frac{\pi}{6}$ is given by
For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is
If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & 3 \\ 3 & 2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & b \\ 7 & -1 & -2 \\ c & 1 & 1\end{array}\right]$ and if matrix $B$ is the inverse of matrix $A$, then value of $4 a+2 b-c$ is
Let $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=x \mathrm{~A}+y \mathrm{I}_2$, (where $\mathrm{I}_2$ is unit matrix of order 2), then