If $$\mathrm{A}=\left[\begin{array}{cc}\lambda & \mathrm{i} \\ \mathrm{i} & -\lambda\end{array}\right]$$ and $$\mathrm{A}^{-1}$$ does not exist, then $$\lambda=$$ (where $$\mathrm{i}=\sqrt{-1}$$)
If $$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$$, and $$A(\operatorname{adj} A)=k I$$, then the value of $$(k+1)^4$$ is
IF $$A X=B$$, where $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$$, then $$2 x+y-z=$$
$$\text { If } A=\left[\begin{array}{ll} 2 & -2 \\ 2 & -3 \end{array}\right], B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text {, then }\left(B^{-1} A^{-1}\right)^{-1}=\text { ? }$$