1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Matrix A is non-singular matrix and $(A-3 I)(A-5 I)=0$, then $\frac{15}{8} A^{-1}=\ldots \ldots$

A

$\mathrm{I}-8 \mathrm{~A}$

B

$2 \mathrm{I}-\frac{1}{15} \mathrm{~A}$

C

$\mathrm{I}-\frac{1}{8} \mathrm{~A}$

D

$8 \mathrm{I}-15 \mathrm{~A}$

2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]$ and A .adj $\mathrm{A}=\mathrm{AA}^{\mathrm{T}}$, then $5 \mathrm{a}+\mathrm{b}=$

A
7
B
9
C
13
D
5
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]_{3 \times 3}$, then $A^{-1}=$

A
A
B
$\mathrm{A}^2$
C
$\mathrm{A}^3$
D
$\mathrm{A}^4$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right], B=\operatorname{adj} A$ and $C=5 A$, then $\frac{|\operatorname{adjB}|}{|\mathrm{C}|}=$

A
2
B
4
C
1
D
5
MHT CET Subjects
EXAM MAP