1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \mathrm{f}(x)+3 \mathrm{f}\left(\frac{1}{x}\right)=x^2+1, x \neq 0$ and $y=5 x^2 \mathrm{f}(x)$, then $y$ is strictly increasing in

A
$\left(0, \frac{1}{2}\right)$
B
$\left(\frac{-2}{5}, 0\right)$
C
$\left(\frac{1}{2}, \frac{\sqrt{5}}{2}\right)$
D
$\left(\frac{-1}{2}, 0\right)$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the curve $y=a x^2-6 x+b$ passes through $(0,4)$ and has its tangent parallel to the X-axis at $x=\frac{3}{2}$, then the values of $a$ and $b$ respectively are

A
$-2,-4$
B
2,4
C
$-2,4$
D
$2,-4$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

20 is divided into two parts so that the product of the cube of one part and the square of the other part is maximum, then these two parts are

A
15,5
B
16,4
C
12,8
D
14,6
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between the line $y-x=1$ and the curve $x=y^2$ is

A
$\frac{3 \sqrt{2}}{8}$
B
$\frac{2 \sqrt{3}}{8}$
C
$\frac{3 \sqrt{2}}{5}$
D
$\frac{\sqrt{3}}{4}$
MHT CET Subjects
EXAM MAP