1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X:}$ 1 2 3 4 5
$\mathrm{P(X):}$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{P(X > 2)}$ is equal to

A
$\frac{7}{12}$
B
$\frac{23}{36}$
C
$\frac{1}{36}$
D
$\frac{1}{6}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability, that a student will get 4 or more correct answers just by guessing, is

A
$\frac{10}{3^5}$
B
$\frac{17}{3^5}$
C
$\frac{13}{3^5}$
D
$\frac{11}{3^5}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let a random variable X have a Binomial distribution with mean 8 and variance 4 . If $\mathrm{P}(x \leqslant 2)=\frac{\mathrm{k}}{2^{16}}$, then k is equal to

A
17
B
121
C
1
D
137
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the probability distribution

$\mathrm{X:}$ $-2$ $-1$ $0$ $1$ $2$ $3$
$\mathrm{p}(x):$ 0.1 0.2 0.2 0.3 0.15 0.05

Then the $\operatorname{Var}(\mathrm{X})$ is

(Given : $$\left.(0.25)^2=0.0625,(0.35)^2=0.1225,(0.45)^2=0.2025\right)$$

A
0.8275
B
1.1225
C
1.8275
D
2.0725
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12