1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a random variable X has the following probability distribution values

$\mathrm{X}$ 0 1 2 3 4 5 6 7
$\mathrm{P(X):}$ 0 $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{k^2}$ $\mathrm{2k^2}$ $\mathrm{7k^2+k}$

Then $P(X \geq 6)$ has the value

A
$\frac{19}{100}$
B
$\frac{81}{100}$
C
$\frac{9}{100}$
D
$\frac{91}{100}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X takes the values $0,1,2,3$ and its mean is 1.3 . If $\mathrm{P}(\mathrm{X}=3)=2 \mathrm{P}(\mathrm{X}=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is

A
0.2
B
0.1
C
0.3
D
0.4
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three persons $\mathrm{P}, \mathrm{Q}$ and R independently try to hit a target. If the probabilities of their hitting the target are $\frac{3}{4}, \frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by P or Q but not by $R$, is

A
$\frac{15}{64}$
B
$\frac{21}{64}$
C
$\frac{39}{64}$
D
$\frac{9}{64}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A box contains 15 green and 10 yellow balls. If 10 balls are randomly drawn, one by one, with replacement, then the variance of the number of green balls drawn is

A
$6$
B
$4$
C
$\frac{6}{25}$
D
$\frac{12}{5}$
MHT CET Subjects
EXAM MAP