1
MHT CET 2021 24th September Morning Shift
+2
-0

If the probability distribution function of a random variable X is given as

$$\mathrm{X=x_i}$$ $$-2$$ $$-1$$ 0 1 2
$$\mathrm{P(X=x_i)}$$ 0.2 0.3 0.15 0.25 0.1

Then F(0) is equal to

A
$$\mathrm{P}(\mathrm{X}>0)$$
B
$$\mathrm{1-P(X>0)}$$
C
$$1-\mathrm{P}(\mathrm{X}<0)$$
D
$$\mathrm{P}(\mathrm{X}<0)$$
2
MHT CET 2021 24th September Morning Shift
+2
-0

If $$\mathrm{P}(\mathrm{A})=\frac{3}{10}, \mathrm{P}(\mathrm{B})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{5}$$, then $$\mathrm{P}(\mathrm{A} / \mathrm{B}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})=$$

A
$$\frac{1}{3}$$
B
$$\frac{1}{12}$$
C
$$\frac{1}{10}$$
D
$$\frac{1}{4}$$
3
MHT CET 2021 24th September Morning Shift
+2
-0

The probability distribution of a discrete random variable X is

$$\mathrm{X}$$ 1 2 3 4 5 6
$$\mathrm{P(X)}$$ K 2K 3K 4K 5K 6K

Find the value of $$\mathrm{P}(2<\mathrm{X}<6)$$

A
$$\frac{4}{21}$$
B
$$\frac{1}{21}$$
C
$$\frac{10}{21}$$
D
$$\frac{4}{7}$$
4
MHT CET 2021 24th September Morning Shift
+2
-0

A die is thrown four times. The probability of getting perfect square in at least one throw is

A
$$\frac{58}{61}$$
B
$$\frac{16}{81}$$
C
$$\frac{65}{81}$$
D
$$\frac{23}{81}$$
EXAM MAP
Medical
NEET