1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $X \sim B(n, p)$ then $\frac{P(X=k)}{P(X=k-1)}=$

A
$\frac{\mathrm{n}-\mathrm{k}}{\mathrm{k}-1} \cdot \frac{\mathrm{p}}{\mathrm{q}}$
B
$\frac{n-k+1}{k+1} \cdot \frac{p}{q}$
C
$\frac{n+1}{k} \cdot \frac{q}{p}$
D
$\frac{n-k+1}{k} \cdot \frac{p}{q}$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let X be a discrete random variable. The probability distribution of X is given below

$$ \begin{array}{|c|c|c|c|} \hline \mathrm{X} & 30 & 10 & -10 \\ \hline \mathrm{P}(\mathrm{X}) & \frac{1}{5} & \mathrm{~A} & \mathrm{~B} \\ \hline \end{array} $$

and $\mathrm{E}(\mathrm{X})=4$, then the value of AB is equal to

A
$\frac{3}{10}$
B
$\frac{2}{15}$
C
$\frac{1}{15}$
D
$\frac{3}{20}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a game, 3 coins are tossed. A person is paid $Rs \, 150$ if he gets all heads or all tails and he is supposed to pay ₹50 if he gets one head or two heads. The amount he can expect to win / lose on an average per game in ₹ is

A
100
B
0
C
200
D
-100
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $A$ and $B$ are independent events with $\mathrm{P}(\mathrm{B})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{11}{20}$, then $\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}\right)$ is root of the equation

A
$4 x^2-7 x+3=0$
B
$4 x^2+7 x+3=0$
C
$4 x^2-3 x-7=0$
D
$6 x^2-5 x+1=0$
MHT CET Subjects
EXAM MAP