Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. Then mean of number of tens is
A fair die is tossed twice in succession. If $$\mathrm{X}$$ denotes the number of fours in two tosses, then the probability distribution of $$\mathrm{X}$$ is given by
If $$\mathrm{A}$$ and $$\mathrm{B}$$ are two events such that $$\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{5}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{3}$$, then the value of $$\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime} / \mathrm{A}^{\prime}\right)$$ is
Let a random variable $$\mathrm{X}$$ have a Binomial distribution with mean 8 and variance 4. If $$\mathrm{P}(\mathrm{X} \leq 2)=\frac{\mathrm{K}}{2^{16}}$$, then $$\mathrm{K}$$ is