1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
A box contains 9 tickets numbered 1 to 9 both inclusive. If 3 tickets are drawn from the box one at a time, then the probability that they are alternatively either {odd, even, odd} or {even, odd, even} is
A
$\frac{5}{17}$
B
$\frac{4}{17}$
C
$\frac{5}{16}$
D
$\frac{5}{18}$
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The probability distribution of a discrete random variable X is

$\mathrm{X}$ 0 1 2 3 4
$\mathrm{P(X=}x)$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{4k}$ $\mathrm{k}$

If $\mathrm{a}=\mathrm{P}(x<3)$ and $\mathrm{b}=\mathrm{P}(2 \leq \mathrm{X}<4)$, then

A
$\mathrm{a}=\mathrm{b}$
B
$a>b$
C
a $<$ b
D
$\mathrm{a}=\frac{1}{2} \mathrm{~b}$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If a random variable $X$ has the p.d.f. $f(x)=\left\{\begin{array}{cc}\frac{\mathrm{k}}{x^2+1} & , \text { if } 0< x< \infty \\ 0 & , \text { otherwise }\end{array}\right.$ then c.d.f. of X is
A
$2 \tan ^{-1} x$
B
$\frac{\pi}{2} \tan ^{-1} x$
C
$\frac{2}{\pi} \tan ^{-1} x$
D
$\tan ^{-1} x$
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If a random variable $X$ follows the Binomial distribution $\mathrm{B}(33, \mathrm{p})$ such that $3 \mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\mathrm{X}=1)$, then the variance of X is
A
$\frac{11}{144}$
B
$\frac{35}{48}$
C
$\frac{121}{48}$
D
$\frac{33}{144}$
MHT CET Subjects
EXAM MAP