1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a random variable $X$ has p.d.f. $f(x)=\left\{\begin{array}{ll}\frac{a x^2}{2}+b x & , \text { if } 1 \leqslant x \leqslant 3 \\ 0 & , \text { otherwise }\end{array}\right.$ and $f(2)=2$, then the values of $a$ and $b$ are, respectively

A
$11,-10$
B
$\quad-9,10$
C
$\frac{1}{6}, \frac{5}{6}$
D
$9,-8$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
Three urns respectively contain 2 white and 3 black, 3 white and 2 black and 1 white and 4 black balls. If one ball is drawn from each um, then the probability that the selection contains 1 black and 2 white balls is
A
$\frac{13}{125}$
B
$\frac{37}{125}$
C
$\frac{28}{125}$
D
$\frac{33}{125}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a box containing 100 apples, 10 are defective. The probability that in a sample of 6 apples, 3 are defective is

A
0.1548
B
0.1458
C
0.01854
D
0.01458
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Four defective oranges are accidentally mixed with sixteen good ones. Three oranges are drawn from the mixed lot. The probability distribution of defective oranges is

A

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{95} & \frac{8}{19} & \frac{1}{285} \\ \hline \end{array} $$

B

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{19} & \frac{8}{95} & \frac{1}{285} \\ \hline \end{array} $$

C

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{95} & \frac{1}{285} & \frac{8}{19} \\ \hline \end{array} $$

D

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{285} & \frac{8}{95} & \frac{8}{19} & \frac{28}{57} \\ \hline \end{array} $$

MHT CET Subjects
EXAM MAP