1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well- shuffled pack of 52 cards. Let X denote the random variable of number of kings obtained in the two drawn cards. Then $\mathrm{P}(x=1)+\mathrm{P}(x=2)$ equals

A
$\frac{49}{169}$
B
$\frac{24}{169}$
C
$\frac{52}{169}$
D
$\frac{25}{169}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then mean of number of kings is

A
$\frac{1}{13}$
B
$\frac{1}{169}$
C
$\frac{2}{13}$
D
$\frac{4}{169}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable x has the following probability distribution. Then value of $k$ is _________ and $\mathrm{P}(3< x \leq 6)$ has the value

$\mathrm{X}=x$ 0 1 2 3 4 5 6 7 8
$\mathrm{P}(x)$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{4k}$ $\mathrm{4k}$ $\mathrm{3k}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{k}$

A
$\frac{1}{20}, \frac{3}{7}$
B
$\frac{5}{21}, \frac{3}{7}$
C
$\frac{1}{21}, \frac{3}{7}$
D
$\frac{1}{20}, \frac{4}{7}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{X} \sim \mathrm{B}\left(6, \frac{1}{2}\right)$, then $\mathrm{P}[|x-4| \leqslant 2]$ is

A
$\frac{115}{128}$
B
$\frac{63}{64}$
C
$\frac{57}{64}$
D
$\frac{7}{64}$
MHT CET Subjects
EXAM MAP