1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A particle moves along a curve $y=\frac{2 x^3-1}{3}$. The points on the curve at which the $y$ co-ordinate is changing 18 times the $x$ co-ordinate are

A
$\left(-3,-\frac{55}{3}\right),\left(3,-\frac{53}{3}\right)$
B
$\left(-3, \frac{53}{3}\right),\left(3, \frac{55}{3}\right)$
C
$\left(-3,-\frac{53}{3}\right),\left(3, \frac{55}{3}\right)$
D
$\left(-3,-\frac{55}{3}\right),\left(3, \frac{53}{3}\right)$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of motion of the particle is $\mathrm{s}=\mathrm{at}^2+\mathrm{bt}+\mathrm{c}$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} /$ seconds and the acceleration is $10 \mathrm{~m} /$ seconds $^2$, then

A
$a+c=2 b$
B
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
C
$\mathrm{a}-\mathrm{c}=\mathrm{b}$
D
$a+c=3 b$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is

A
5
B
20
C
6
D
21
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=\sin ^4 x+\cos ^4 x$ increases if

A
$0 < x < \frac{\pi}{8}$
B
$\frac{\pi}{4} < x < \frac{\pi}{2}$
C
$\frac{3 \pi}{8} < x < \frac{5 \pi}{8}$
D
$\frac{5 \pi}{8} < x < \frac{3 \pi}{4}$
MHT CET Subjects
EXAM MAP