1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A ladder 5 m in length is leaning against a wall. The bottom of the ladder is pulled along the ground away from the wall, at the rate of $2 \mathrm{~m} / \mathrm{sec}$. How fast is the height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

A
$\frac{4}{3} \mathrm{~m} / \mathrm{sec}$
B
$\frac{2}{3} \mathrm{~m} / \mathrm{sec}$
C
$\frac{5}{3} \mathrm{~m} / \mathrm{sec}$
D
$\frac{8}{3} \mathrm{~m} / \mathrm{sec}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\mathrm{a} \log x+\mathrm{b} x^2+x$ has its extreme values at $x=-1$ and $x=2$, then the value of $\left(\frac{a}{b}+\frac{b}{a}\right)$ is

A
$-\frac{7}{4}$
B
$-\frac{15}{4}$
C
$-\frac{17}{4}$
D
$-\frac{5}{4}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the X - axis at $(-2,0)$ and cuts the Y -axis at a point Q where its gradient is 3 , then values of $a, b, c$ respectively, are

A
$3,-\frac{1}{2},-\frac{3}{4}$
B
$-\frac{3}{4},-\frac{1}{2}, 3$
C
$-\frac{1}{2},-\frac{3}{4}, 3$
D
$-\frac{1}{2}, 3,-\frac{3}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^3-15 x^2+36 x-48$ on the set $A=\left\{x / x^2+20 \leq 9 x\right\}$ is

A
$-$16
B
$-$7
C
16
D
7
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12