1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A ladder 5 m in length is leaning against a wall. The bottom of the ladder is pulled along the ground away from the wall, at the rate of $2 \mathrm{~m} / \mathrm{sec}$. How fast is the height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

A
$\frac{4}{3} \mathrm{~m} / \mathrm{sec}$
B
$\frac{2}{3} \mathrm{~m} / \mathrm{sec}$
C
$\frac{5}{3} \mathrm{~m} / \mathrm{sec}$
D
$\frac{8}{3} \mathrm{~m} / \mathrm{sec}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\mathrm{a} \log x+\mathrm{b} x^2+x$ has its extreme values at $x=-1$ and $x=2$, then the value of $\left(\frac{a}{b}+\frac{b}{a}\right)$ is

A
$-\frac{7}{4}$
B
$-\frac{15}{4}$
C
$-\frac{17}{4}$
D
$-\frac{5}{4}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the X - axis at $(-2,0)$ and cuts the Y -axis at a point Q where its gradient is 3 , then values of $a, b, c$ respectively, are

A
$3,-\frac{1}{2},-\frac{3}{4}$
B
$-\frac{3}{4},-\frac{1}{2}, 3$
C
$-\frac{1}{2},-\frac{3}{4}, 3$
D
$-\frac{1}{2}, 3,-\frac{3}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^3-15 x^2+36 x-48$ on the set $A=\left\{x / x^2+20 \leq 9 x\right\}$ is

A
$-$16
B
$-$7
C
16
D
7
MHT CET Subjects
EXAM MAP