1
GATE EE 2017 Set 1
Numerical
+2
-0
The positive, negative and zero sequence reactances of a wye-connected synchronous generator are 0.2 pu, 0.2 pu, and 0.1 pu, respectively. The generator is on open circuit with a terminal voltage of 1 pu. The minimum value of the inductive reactance, in pu, required to be connected between neutral and ground so that the fault current does not exceed 3.75 pu if a single line to ground fault occurs at the terminals is _______ (assume fault impedance to be zero). (Give the answer up to one decimal place)
2
GATE EE 2016 Set 1
Numerical
+2
-0
A 30 MVA, 3-phase, 50Hz, 13.8 kV, star-connected synchronous generator has positive, negative and zero sequence reactances, 15%, 15% and 5% respectively. A reactance (Xn) is connected between the neutral of the generator and ground. A double line to ground fault takes place involving phases ‘b’ and ‘c’, with a fault impedance of j0.1 p.u. The value of Xn (in p.u.) that will limit the positive sequence generator current to 4270 A is __________.
3
GATE EE 2015 Set 1
+2
-0.6
A sustained three phase fault occurs in the power system shown in the figure. The current and voltage phasors during the fault (on a common reference), after the natural transients have died down, are also shown. Where is the fault located?
A
Location $$P$$
B
Location $$Q$$
C
Location $$R$$
D
Location $$S$$
4
GATE EE 2014 Set 2
Numerical
+2
-0
A three phase, $$100$$ $$MVA,$$ $$25$$ $$kV$$ generator has solidly grounded neutral. The positive, negative, and the zero sequence reactance's of the generator are $$0.2$$ $$pu$$, $$0.2$$ $$pu$$, and 0.05 $$pu,$$ respectively, at the machine base quantities. If a bolted single phase to ground fault occurs at the terminal of the unloaded generator, the fault current in amperes immediately after the fault is __________