1
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose we define a sequence transformation between ''a-b-c'' and ''p-n-0''' variables as follows:
$$\left[ {\matrix{ {{f_a}} \cr {{f_b}} \cr {{f_c}} \cr } } \right] = k\left[ {\matrix{ 1 & 1 & 1 \cr {{\alpha ^2}} & \alpha & 1 \cr \alpha & {{\alpha ^2}} & 1 \cr } } \right]\left[ {\matrix{ {{f_p}} \cr {{f_n}} \cr {{f_o}} \cr } } \right]$$ where $$\,\alpha = {e^{j{{2\pi } \over 3}}}\,\,$$ and $$k$$ is a constant
Now, if it is given that:
$$\left[ {\matrix{ {{V_p}} \cr {{V_n}} \cr {{V_o}} \cr } } \right] = k\left[ {\matrix{ {0.5} & 0 & 0 \cr 0 & {0.5} & 0 \cr 0 & 0 & {2.0} \cr } } \right]\left[ {\matrix{ {{i_p}} \cr {{I_n}} \cr {{i_o}} \cr } } \right]\,\,$$ and $$\left[ {\matrix{ {{V_a}} \cr {{V_b}} \cr {{V_c}} \cr } } \right] = z\left[ {\matrix{ {{i_a}} \cr {{I_b}} \cr {{i_c}} \cr } } \right]\,\,$$ then,
A
$$z = \left[ {\matrix{ {1.0} & {0.5} & {0.75} \cr {0.75} & {1.0} & {0.5} \cr {0.5} & {0.75} & {1.0} \cr } } \right]$$
B
$$z = \left[ {\matrix{ {1.0} & {0.5} & {0.5} \cr {0.5} & {1.0} & {0.5} \cr {0.5} & {0.5} & {1.0} \cr } } \right]$$
C
$$z = 3{k^2}\left[ {\matrix{ {1.0} & {0.75} & {0.5} \cr {0.5} & {1.0} & {0.75} \cr {0.75} & {0.5} & {1.0} \cr } } \right]$$
D
$$z = {{{k^2}} \over 3}\left[ {\matrix{ {1.0} & { - 0.5} & { - 0.5} \cr { - 0.5} & {1.0} & { - 0.5} \cr { - 0.5} & { - 0.5} & {1.0} \cr } } \right]$$
2
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.67
Three identical star connected resistors of $$1.0$$ $$p.u$$ are connected to an unbalanced $$3$$ phase supply. The load neutral is isolated. The symmetrical components of the line voltages in $$p.u.$$ calculations are with the respective base values, the phase to neutral sequence voltages are
A
$${V_{an1}} = X\angle \left( {{\theta _1} + {{30}^0}} \right),\,\,{V_{an2}} = Y\angle \left( {{\theta _2} - {{30}^0}} \right)$$
B
$${V_{an1}} = X\angle \left( {{\theta _1} - {{30}^0}} \right),\,\,{V_{an2}} = Y\angle \left( {{\theta _2} + {{30}^0}} \right)$$
C
$${V_{an1}} = {1 \over {\sqrt 3 }}X\angle \left( {{\theta _1} - {{30}^0}} \right),\,\,{V_{an2}} = {1 \over {\sqrt 3 }}Y\angle \left( {{\theta _2} - {{30}^0}} \right)$$
D
$${V_{an1}} = {1 \over {\sqrt 3 }}X\angle \left( {{\theta _1} - {{60}^0}} \right),\,\,{V_{an2}} = {1 \over {\sqrt 3 }}Y\angle \left( {{\theta _2} - {{60}^0}} \right)$$
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
The parameters of transposed overhead transmission line are given as: self reactance $${X_s} = 0.4\,\,\Omega /km$$ and Mutual reactance $$\,{X_m} = 0.1\,\,\Omega /km.\,\,$$ The positive sequence reactance $${X_1}$$ and zero sequence reactance $${X_0}$$ respectively in $$\Omega /km$$ are
A
$$0.3, 0.2$$
B
$$0.5, 0.2$$
C
$$0.5, 0.6$$
D
$$0.3, 0.6$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
At a $$220$$ kV substation of a power system, it is given that the three-phase fault level is $$4000$$ MVA and single-line to ground fault level is $$5000$$ MVA. Neglecting the resistance and the shunt susceptances of the system.

The positive sequence driving point reactance at the bus is

A
$$2.5\,\Omega $$
B
$$4.033\,\Omega $$
C
$$5.5\,\Omega $$
D
$$12.1\,\Omega $$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12