1
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose we define a sequence transformation between ''a-b-c'' and ''p-n-0''' variables as follows:
$$\left[ {\matrix{ {{f_a}} \cr {{f_b}} \cr {{f_c}} \cr } } \right] = k\left[ {\matrix{ 1 & 1 & 1 \cr {{\alpha ^2}} & \alpha & 1 \cr \alpha & {{\alpha ^2}} & 1 \cr } } \right]\left[ {\matrix{ {{f_p}} \cr {{f_n}} \cr {{f_o}} \cr } } \right]$$ where $$\,\alpha = {e^{j{{2\pi } \over 3}}}\,\,$$ and $$k$$ is a constant
Now, if it is given that:
$$\left[ {\matrix{ {{V_p}} \cr {{V_n}} \cr {{V_o}} \cr } } \right] = k\left[ {\matrix{ {0.5} & 0 & 0 \cr 0 & {0.5} & 0 \cr 0 & 0 & {2.0} \cr } } \right]\left[ {\matrix{ {{i_p}} \cr {{I_n}} \cr {{i_o}} \cr } } \right]\,\,$$ and $$\left[ {\matrix{ {{V_a}} \cr {{V_b}} \cr {{V_c}} \cr } } \right] = z\left[ {\matrix{ {{i_a}} \cr {{I_b}} \cr {{i_c}} \cr } } \right]\,\,$$ then,
$$\left[ {\matrix{ {{f_a}} \cr {{f_b}} \cr {{f_c}} \cr } } \right] = k\left[ {\matrix{ 1 & 1 & 1 \cr {{\alpha ^2}} & \alpha & 1 \cr \alpha & {{\alpha ^2}} & 1 \cr } } \right]\left[ {\matrix{ {{f_p}} \cr {{f_n}} \cr {{f_o}} \cr } } \right]$$ where $$\,\alpha = {e^{j{{2\pi } \over 3}}}\,\,$$ and $$k$$ is a constant
Now, if it is given that:
$$\left[ {\matrix{ {{V_p}} \cr {{V_n}} \cr {{V_o}} \cr } } \right] = k\left[ {\matrix{ {0.5} & 0 & 0 \cr 0 & {0.5} & 0 \cr 0 & 0 & {2.0} \cr } } \right]\left[ {\matrix{ {{i_p}} \cr {{I_n}} \cr {{i_o}} \cr } } \right]\,\,$$ and $$\left[ {\matrix{ {{V_a}} \cr {{V_b}} \cr {{V_c}} \cr } } \right] = z\left[ {\matrix{ {{i_a}} \cr {{I_b}} \cr {{i_c}} \cr } } \right]\,\,$$ then,
2
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.67
Three identical star connected resistors of $$1.0$$ $$p.u$$ are connected to an unbalanced $$3$$ phase supply. The load neutral is isolated. The symmetrical components of the line voltages in $$p.u.$$ calculations are with the respective base values, the phase to neutral sequence voltages are
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
The parameters of transposed overhead transmission line are given as: self reactance $${X_s} = 0.4\,\,\Omega /km$$ and Mutual reactance $$\,{X_m} = 0.1\,\,\Omega /km.\,\,$$ The positive sequence reactance $${X_1}$$ and zero sequence reactance $${X_0}$$ respectively in $$\Omega /km$$ are
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
At a $$220$$ kV substation of a power system, it is given that the three-phase fault level is $$4000$$ MVA and single-line to ground fault level is $$5000$$ MVA. Neglecting the resistance and the shunt susceptances of the system.
The positive sequence driving point reactance at the bus is
Questions Asked from Symmetrical Components and Symmetrical and Unsymmetrical Faults (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2023 (1)
GATE EE 2018 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2016 Set 1 (1)
GATE EE 2015 Set 1 (1)
GATE EE 2014 Set 2 (1)
GATE EE 2014 Set 1 (1)
GATE EE 2010 (1)
GATE EE 2008 (3)
GATE EE 2007 (1)
GATE EE 2006 (1)
GATE EE 2005 (3)
GATE EE 2004 (3)
GATE EE 2003 (2)
GATE EE 2002 (1)
GATE EE 2001 (1)
GATE EE 2000 (1)
GATE EE 1998 (1)
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits