1
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
In an unbalanced three phase system phase current $${{\rm I}_a} = 1\angle \left( { - {{90}^0}} \right)\,\,pu,\,\,$$ negative sequence current $$\,{{\rm I}_{b2}} = 4\angle \left( { - {{150}^0}} \right)\,\,pu,\,\,$$ zero sequence current $$\,\,{{\rm I}_{c0}} = 3\angle {90^0}\,\,pu.\,\,\,$$ The magnitude of phase current $${{\rm I}_b}$$ in $$pu$ is
A
$$1.00$$
B
$$7.81$$
C
$$11.53$$
D
$$13.00$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
The zero-sequence circuit of the three phase transformer shown in the figure is GATE EE 2010 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 15 English
A
GATE EE 2010 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 15 English Option 1
B
GATE EE 2010 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 15 English Option 2
C
GATE EE 2010 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 15 English Option 3
D
GATE EE 2010 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 15 English Option 4
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

The instant $$\,\left( {{t_0}} \right)\,\,$$ of the fault will be

A
$$4.682$$ $$ms$$
B
$$9.667$$ $$ms$$
C
$$14.667$$ $$ms$$
D
$$19.667$$ $$ms$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

The $$rms$$ value of the ac component of fault current $$\,\left( {{{\rm I}_x}} \right)$$ will be

A
$$3.59$$ $$kA$$
B
$$5.07$$ $$kA$$
C
$$7.18$$ $$kA$$
D
$$10.15$$$$kA$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12