1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
If $$z=xy$$ $$ln(xy),$$ then
A
$$x{{\partial z} \over {\partial x}} + y{{\partial z} \over {\partial y}} = 0$$
B
$$y{{\partial z} \over {\partial x}} = x{{\partial z} \over {\partial y}}$$
C
$$x{{\partial z} \over {\partial x}} = y{{\partial z} \over {\partial y}}$$
D
$$y{{\partial z} \over {\partial x}} + x{{\partial z} \over {\partial y}} = 0$$
2
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
For $$0 \le t < \infty ,$$ the maximum value of the function $$f\left( t \right) = {e^{ - t}} - 2{e^{ - 2t}}\,$$ occurs at
A
$$t = {\log _e}4$$
B
$$t = {\log _e}2$$
C
$$t=0$$
D
$$t = {\log _e}8$$
3
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The value of $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {1 \over x}} \right)^x}\,\,$$ is
A
$$ln2$$
B
$$1.0$$
C
$$e$$
D
$$\infty $$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
If $$\,{e^y} = {x^{1/x}}\,\,$$ then $$y$$ has a
A
maximum at $$x=e$$
B
minimum $$x=e$$
C
maximum at $$x = {e^{ - 1}}$$
D
minimum $$x = {e^{ - 1}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12