1
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

The $$rms$$ value of the ac component of fault current $$\,\left( {{{\rm I}_x}} \right)$$ will be

A
$$3.59$$ $$kA$$
B
$$5.07$$ $$kA$$
C
$$7.18$$ $$kA$$
D
$$10.15$$$$kA$$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Given that: $$\,{V_{s1}} = {V_{s2}} = 1 + j0\,\,p.u,\,\, + ve\,\,$$ sequence impedance are $$\,{Z_{s1}} = {Z_{s2}} = 0.001 + j0.01\,\,p.u\,\,$$ and $${Z_L} = 0.006 + j\,0.06\,\,p.u,\,\,3\phi .\,\,\,$$ Base $$MVA=100,$$ voltage base $$=400$$ $$kV(L-L).$$
Nominal system frequency $$= 50$$ $$Hz.$$ The reference voltage for phase $$'a'$$ is defined as $$\,\,V\left( t \right) = {V_m}\,\cos \left( {\omega t} \right).\,\,\,$$ A symmetrical $$3\phi $$ fault occurs at centre of the line, i.e., at point $$'F'$$ at time 'to' the $$+ve$$ sequence impedance from source $${S_1}$$ to point $$'F'$$ equals $$(0.004 + j \,\,0.04)$$ $$p.u.$$ The wave form corresponding to phase $$'a'$$ fault current from bus $$X$$ reveals that decaying $$d.c.$$ offset current is $$-ve$$ and in magnitude at its maximum initial value. Assume that the negative sequence are equal to $$+ve$$ sequence impedances and the zero sequence $$(Z)$$ are $$3$$ times $$+ve$$ sequence $$(Z).$$

Instead of the three phase fault, if a single line to ground fault occurs on phase $$' a '$$ at point $$' F '$$ with zero fault impedance, then the $$rms$$ of the ac component of fault current $$\left( {{{\rm I}_x}} \right)$$ for phase $$'a'$$ will be

A
$$4.97$$ $$pu$$
B
$$7.0$$ $$pu$$
C
$$14.93$$ $$pu$$
D
$$29.85$$ $$pu$$
3
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose we define a sequence transformation between ''a-b-c'' and ''p-n-0''' variables as follows:
$$\left[ {\matrix{ {{f_a}} \cr {{f_b}} \cr {{f_c}} \cr } } \right] = k\left[ {\matrix{ 1 & 1 & 1 \cr {{\alpha ^2}} & \alpha & 1 \cr \alpha & {{\alpha ^2}} & 1 \cr } } \right]\left[ {\matrix{ {{f_p}} \cr {{f_n}} \cr {{f_o}} \cr } } \right]$$ where $$\,\alpha = {e^{j{{2\pi } \over 3}}}\,\,$$ and $$k$$ is a constant
Now, if it is given that:
$$\left[ {\matrix{ {{V_p}} \cr {{V_n}} \cr {{V_o}} \cr } } \right] = k\left[ {\matrix{ {0.5} & 0 & 0 \cr 0 & {0.5} & 0 \cr 0 & 0 & {2.0} \cr } } \right]\left[ {\matrix{ {{i_p}} \cr {{I_n}} \cr {{i_o}} \cr } } \right]\,\,$$ and $$\left[ {\matrix{ {{V_a}} \cr {{V_b}} \cr {{V_c}} \cr } } \right] = z\left[ {\matrix{ {{i_a}} \cr {{I_b}} \cr {{i_c}} \cr } } \right]\,\,$$ then,
A
$$z = \left[ {\matrix{ {1.0} & {0.5} & {0.75} \cr {0.75} & {1.0} & {0.5} \cr {0.5} & {0.75} & {1.0} \cr } } \right]$$
B
$$z = \left[ {\matrix{ {1.0} & {0.5} & {0.5} \cr {0.5} & {1.0} & {0.5} \cr {0.5} & {0.5} & {1.0} \cr } } \right]$$
C
$$z = 3{k^2}\left[ {\matrix{ {1.0} & {0.75} & {0.5} \cr {0.5} & {1.0} & {0.75} \cr {0.75} & {0.5} & {1.0} \cr } } \right]$$
D
$$z = {{{k^2}} \over 3}\left[ {\matrix{ {1.0} & { - 0.5} & { - 0.5} \cr { - 0.5} & {1.0} & { - 0.5} \cr { - 0.5} & { - 0.5} & {1.0} \cr } } \right]$$
4
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.67
Three identical star connected resistors of $$1.0$$ $$p.u$$ are connected to an unbalanced $$3$$ phase supply. The load neutral is isolated. The symmetrical components of the line voltages in $$p.u.$$ calculations are with the respective base values, the phase to neutral sequence voltages are
A
$${V_{an1}} = X\angle \left( {{\theta _1} + {{30}^0}} \right),\,\,{V_{an2}} = Y\angle \left( {{\theta _2} - {{30}^0}} \right)$$
B
$${V_{an1}} = X\angle \left( {{\theta _1} - {{30}^0}} \right),\,\,{V_{an2}} = Y\angle \left( {{\theta _2} + {{30}^0}} \right)$$
C
$${V_{an1}} = {1 \over {\sqrt 3 }}X\angle \left( {{\theta _1} - {{30}^0}} \right),\,\,{V_{an2}} = {1 \over {\sqrt 3 }}Y\angle \left( {{\theta _2} - {{30}^0}} \right)$$
D
$${V_{an1}} = {1 \over {\sqrt 3 }}X\angle \left( {{\theta _1} - {{60}^0}} \right),\,\,{V_{an2}} = {1 \over {\sqrt 3 }}Y\angle \left( {{\theta _2} - {{60}^0}} \right)$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12