1
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
For $$\left| x \right| < < 1,\,\cot \,h\left( x \right)\,\,\,$$ can be approximated as
A
$$x$$
B
$${x^2}$$
C
$${1 \over x}$$
D
$${1 \over {{x^2}}}$$
2
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
The value of the integral $$1 = {1 \over {\sqrt {2\pi } }}\,\,\int\limits_0^\infty {{e^{ - {\raise0.5ex\hbox{$\scriptstyle {{x^2}}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 8$}}}}} \,\,dx\,\,\,$$ is ________.
A
$$1$$
B
$${\pi }$$
C
$$2$$
D
$${2\pi }$$
3
GATE ECE 1997
MCQ (Single Correct Answer)
+1
-0.3
The curve given by the equation $${x^2} + {y^2} = 3axy$$ is
A
Symmetrical about $$x$$-axis
B
Symmetrical about $$y$$-axis
C
Symmetrical about the line $$y=x$$
D
Tangential to $$x=y=a/3$$
4
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
By reversing the order of integration $$\int\limits_0^2 {\int\limits_{{x^2}}^{2x} {f\left( {x,y} \right)dy\,dx} } $$ may be represented as ______.
A
$$\int\limits_0^2 {\int\limits_{{x^2}}^{2x} {f\left( {x,y} \right)dy\,dx} } $$
B
$$\int\limits_0^2 {\int\limits_y^{\sqrt y } {f\left( {x,y} \right)dy\,dx} } $$
C
$$\int\limits_0^4 {\int\limits_{y/2}^{\sqrt y } {f\left( {x,y} \right)dy\,dx} } $$
D
$$\int\limits_{{x^2}}^{2x} {\int\limits_0^2 {f\left( {x,y} \right)dy\,dx} } $$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12