1
GATE ECE 2007
+1
-0.3
For $$\left| x \right| < < 1,\,\cot \,h\left( x \right)\,\,\,$$ can be approximated as
A
$$x$$
B
$${x^2}$$
C
$${1 \over x}$$
D
$${1 \over {{x^2}}}$$
2
GATE ECE 2005
+1
-0.3
The value of the integral $$1 = {1 \over {\sqrt {2\pi } }}\,\,\int\limits_0^\infty {{e^{ - {\raise0.5ex\hbox{{{x^2}}} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{8}}}}} \,\,dx\,\,\,$$ is ________.
A
$$1$$
B
$${\pi }$$
C
$$2$$
D
$${2\pi }$$
3
GATE ECE 1997
+1
-0.3
The curve given by the equation $${x^2} + {y^2} = 3axy$$ is
A
Symmetrical about $$x$$-axis
B
Symmetrical about $$y$$-axis
C
Symmetrical about the line $$y=x$$
D
Tangential to $$x=y=a/3$$
4
GATE ECE 1995
+1
-0.3
By reversing the order of integration $$\int\limits_0^2 {\int\limits_{{x^2}}^{2x} {f\left( {x,y} \right)dy\,dx} }$$ may be represented as ______.
A
$$\int\limits_0^2 {\int\limits_{{x^2}}^{2x} {f\left( {x,y} \right)dy\,dx} }$$
B
$$\int\limits_0^2 {\int\limits_y^{\sqrt y } {f\left( {x,y} \right)dy\,dx} }$$
C
$$\int\limits_0^4 {\int\limits_{y/2}^{\sqrt y } {f\left( {x,y} \right)dy\,dx} }$$
D
$$\int\limits_{{x^2}}^{2x} {\int\limits_0^2 {f\left( {x,y} \right)dy\,dx} }$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination