1
GATE EE 2004
+2
-0.6
A lightning stroke discharges impulse current of $$10$$ kA (peak) on a $$400$$ kV transmission line having surge impedance of $$250\,\Omega$$. The magnitude of transient over-voltage traveling waves in either direction assuming equal distribution form the point of lightning strike will be
A
$$1250$$ kV
B
$$1650$$ kV
C
$$2500$$ kV
D
$$2900$$ kV
2
GATE EE 2004
+2
-0.6
A $$800$$ $$kV$$ transmission line is having per phase line inductance of $$1.1$$ $$mH/km$$ and per phase line capacitance of $$11.68$$ $$nF/km.$$ Ignoring the length of the line, its ideal power transfer capability in $$MW$$ is
A
$$1204$$ $$MW$$
B
$$1504$$ $$MW$$
C
$$2085$$ $$MW$$
D
$$2606$$ $$MW$$
3
GATE EE 2004
+2
-0.6
A $$110$$ $$kV,$$ single core coaxial, XLPE insulated power cable delivering power at $$50$$ $$Hz,$$ has a capacitance of $$125$$ $$nF/km.$$ If the dielectric loss tangent of XLPE is $$\,2\,\, \times \,\,{10^{ - 4}},$$ the dielectric power loss in this cable in $$W/km$$ is
A
$$5.0$$
B
$$31.7$$
C
$$37.8$$
D
$$189.0$$
4
GATE EE 2003
+2
-0.6
The ABCD parameters of a $$3$$-phase overhead transmission line are $$\,A = D = 0.9\angle {0^ \circ }.\,\,B = 200\,\angle {90^ \circ }\,\,\Omega \,\,\,$$ and $$\,\,C = 0.95\, \times \,\,{10^{ - 3}}\angle {90^ \circ }\,\,S.\,\,\,\,$$ At no-load condition, a shunt inductive reactor is connected at the receiving end of the line to limit the receiving end voltage to be equal to the sending-end voltage. The ohmic value of the reactor is
A
$$\infty \Omega$$
B
$$2000\,\Omega$$
C
$$105.26\,\Omega$$
D
$$1052.6\,\Omega$$
EXAM MAP
Medical
NEET