1
GATE CSE 2015 Set 1
Numerical
+2
-0
Consider a non-pipelined processor with a clock rate of 2.5 gigahertz and average cycles per instruction of four. The same processor is upgraded to a pipelined processor with five stages; but due to the internal pipeline delay, the clock speed is reduced to 2 gigahertz. Assume that there are no stalls in the pipeline. The speed up achieved in this pipelined processor is_________.
2
GATE CSE 2015 Set 2
Numerical
+2
-0
Consider the sequence of machine instructions given below:

MUL R5, R0, R1
DIV R6, R2, R3
SUB R8, R7, R4

In the above sequence, $$R0$$ to $$R8$$ are general purpose registers. In the instructions shown, the first register stores the result of the operation performed on the second and the third registers. This sequence of instructions is to be executed in a pipelined instruction processor with the following $$4$$ stages: $$(1)$$ Instruction Fetch and Decode $$(IF), (2)$$ Operand Fetch $$(OF), (3)$$ Perform Operation $$(PO)$$ and $$(4)$$ Write back the result $$(WB).$$ The $$IF,$$ $$OF$$ and $$WB$$ stages take $$1$$ clock cycle each for any instruction. The $$PO$$ stage takes $$1$$ clock cycle for $$ADD$$ or $$SUB$$ instruction, $$3$$ clock cycles for $$MUL$$ instruction and $$5$$ clock cycles for $$DIV$$ instruction. The pipelined processor uses operand forwarding from the $$PO$$ stage to the $$OF$$ stage. The number of clock cycles taken for the execution of the above sequence of instructions is _______________________ .

3
GATE CSE 2015 Set 3
Numerical
+2
-0
Consider the following reservation table for a pipeline having three stages $${S_1},{S_2}$$ and $${S_3}.$$ The minimum average latency $$(MAL)$$ is ________.

4
GATE CSE 2014 Set 1
Numerical
+2
-0
Consider a $$6$$-stage instruction pipeline, where all stages are perfectly balanced. Assume that there is no cycle-time overhead of pipelining. When an application is executing on this $$6$$-stage pipeline, the speedup achieved with respect to non-pipelined execution if $$25$$% of the instructions incur $$2$$ pipeline stall cycles is________________.
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination