Dynamic Programming · Algorithms · GATE CSE

Start Practice

Marks 1

Marks 2

1

Let G(V, E) be a directed graph, where V = {1, 2, 3, 4, 5} is the set of vertices and E is the set of directed edges, as defined by the following adjacency matrix A.

$$A[i][j] = \left\{ {\matrix{ {1,} & {1 \le j \le i \le 5} \cr {0,} & {otherwise} \cr } } \right.$$

A[i][j] = 1 indicates a directed edge from node i to node j. A directed spanning tree of G, rooted at r $$\in$$ V, is defined as a subgraph T of G such that the undirected version of T is a tree, and T contains a directed path from r to every other vertex in V. The number of such directed spanning trees rooted at vertex 5 is _____________.

GATE CSE 2022
2

Consider the following directed graph: 

GATE CSE 2021 Set 2 Algorithms - Dynamic Programming Question 2 English

Which of the following is/are correct about the graph?

GATE CSE 2021 Set 2
3

Define Rn to be the maximum amount earned by cutting a rod of length n meters into one or more pieces of integer length and selling them. For i > 0, let p[i] denotes the selling price of a rod whose length is i meters. Consider the array of prices:

p[1] = 1, p[2] = 5, p[3] = 8, p[4] = 9, p[5] = 10, p[6] = 17, p[7] = 18

Which of the following statements is/are correct about R7?

GATE CSE 2021 Set 1
4
Assume that multiplying a matrix $${G_1}$$ of dimension $$p \times q$$ with another matrix $${G_2}$$ of dimension $$q \times r$$ requires $$pqr$$ scalar multiplications. Computing the product of $$n$$ matrices $${G_1}{G_2}{G_{3...}}{G_n}$$ can be done by parenthesizing in different ways. Define $${G_i}\,\,{G_{i + 1}}$$ as an explicitly computed pair for a given paranthesization if they are directly multiplied. For example, in the matrix multiplication chain $${G_1}{G_2}{G_3}{G_4}{G_5}{G_6}$$ using parenthesization $$\left( {{G_1}\left( {{G_2}{G_3}} \right)} \right)\left( {{G_4}\left( {{G_5}{G_6}} \right)} \right),\,\,{G_2}{G_3}$$ and $${G_5}{G_6}$$ are the only explicitly computed pairs.

Consider a matrix multiplication chain $${F_1}{F_2}{F_3}{F_4}{F_5},$$ where matrices $${F_1},{F_2},{F_3},{F_4}$$ and $${F_5}$$ are of dimensions $$2 \times 25,\,\,25 \times 3,\,\,3 \times 16,\,\,16 \times 1$$ and $$1 \times 1000,$$ respectively. In the parenthesization of $${F_1}{F_2}{F_3}{F_4}{F_5}$$ that minimizes the total number of scalar multiplications, the explicitly computed pairs is/are

GATE CSE 2018
5
Let $${A_1},{A_2},{A_3},$$ and $${A_4}$$ be four matrices of dimensions $$10 \times 5,\,\,5 \times 20,\,\,20 \times 10,$$ and $$10 \times 5,\,$$ respectively. The minimum number of scalar multiplications required to find the product $${A_1}{A_2}{A_3}{A_4}$$ using the basic matrix multiplication method is ______________.
GATE CSE 2016 Set 2
6
Given below are some algorithms, and some algorithm design paradigms.

GROUP 1 GROUP 2
1. Dijkstra's Shortest Path i. Divide and Conquer
2. Floyd-Warshall algorithm to compute
all pairs shortest path
ii. Dynamic Programming
3. Binary search on a sorted array iii. Greedy design
4. Backtracking search on a graph iv. Depth-first search
v. Breadth-first search

Match the above algorithms on the left to the corresponding design paradigm they follow.

GATE CSE 2015 Set 2
7
Consider two strings A = “qpqrr” and B = “pqprqrp”. Let x be the length of the longest common subsequence (not necessarily contiguous) between A and B and let y be the number of such longest common subsequences between A and B. Then x + 10y = ___.
GATE CSE 2014 Set 2
8
Four matrices M1, M2, M3 and M4 of dimensions p $$\times$$ q, q $$\times$$ r, r $$\times$$ s and s $$\times$$ t respectively can be multiplied is several ways with different number of total scalar multiplications. For example, when multiplied as ((M1 $$\times$$ M2) $$\times$$ (M3 $$\times$$ M4)), the total number of multiplications is pqr + rst + prt. When multiplied as (((M1 $$\times$$ M2) $$\times$$ M3) $$\times$$ M4), the total number of scalar multiplications is pqr + prs + pst.

If p = 10, q = 100, r = 20, s = 5 and t = 80, then the number of scalar multiplications needed is:
GATE CSE 2011
9
A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m and n, respectively with indexes of X and Y starting from 0.

We wish to find the length of the longest common sub-sequence (LCS) of X[m] and Y[n] as l(m,n), where an incomplete recursive definition for the function I(i,j) to compute the length of the LCS of X[m] and Y[n] is given below:
l(i,j)  = 0, if either i = 0 or j = 0
        = expr1, if i,j > 0 and X[i-1] = Y[j-1]
        = expr2, if i,j > 0 and X[i-1] ≠ Y[j-1]
Which one of the following options is correct?
GATE CSE 2009
10
A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m and n, respectively with indexes of X and Y starting from 0.

We wish to find the length of the longest common sub-sequence (LCS) of X[m] and Y[n] as l(m,n), where an incomplete recursive definition for the function I(i,j) to compute the length of the LCS of X[m] and Y[n] is given below:
l(i,j)  = 0, if either i = 0 or j = 0
        = expr1, if i,j > 0 and X[i-1] = Y[j-1]
        = expr2, if i,j > 0 and X[i-1] ≠ Y[j-1]
The value of l(i, j) could be obtained by dynamic programming based on the correct recursive definition of l(i, j) of the form given above, using an array L[M, N], where M = m+1 and N = n + 1, such that L[i, j] = l(i, j).

Which one of the following statements would be TRUE regarding the dynamic programming solution for the recursive definition of l(i, j)?
GATE CSE 2009
11
The subset-sum problem is defined as follows. Given a set of n positive integers, S = {a1 ,a2 ,a3 ,…,an} and positive integer W, is there a subset of S whose elements sum to W? A dynamic program for solving this problem uses a 2-dimensional Boolean array X, with n rows and W+1 columns. X[i, j], 1 <= i <= n, 0 <= j <= W, is TRUE if and only if there is a subset of {a1 ,a2 ,…,ai} whose elements sum to j.

Which entry of the array X, if TRUE, implies that there is a subset whose elements sum to W?
GATE CSE 2008
12
The subset-sum problem is defined as follows. Given a set of n positive integers, S = {a1 ,a2 ,a3 ,…,an} and positive integer W, is there a subset of S whose elements sum to W? A dynamic program for solving this problem uses a 2-dimensional Boolean array X, with n rows and W+1 columns. X[i, j], 1 <= i <= n, 0 <= j <= W, is TRUE if and only if there is a subset of {a1 ,a2 ,…,ai} whose elements sum to j.
Which of the following is valid for 2 <= i <= n and ai <= j <= W?
GATE CSE 2008
13
Consider the following C program that attempts to locate an element x in an array Y[] using binary search. The program is erroneous.
1.   f(int Y[10], int x) {
2.     int i, j, k;
3.     i = 0; j = 9;
4.     do {
5.             k =  (i + j) /2;
6.             if( Y[k] < x)  i = k; else j = k;
7.         } while(Y[k] != x && i < j);
8.     if(Y[k] == x) printf ("x is in the array ") ;
9.     else printf (" x is not in the array ") ;
10.  }
On which of the following contents of Y and x does the program fail?
GATE CSE 2008
14
Consider the following C program that attempts to locate an element x in an array Y[] using binary search. The program is erroneous.
1.   f(int Y[10], int x) {
2.     int i, j, k;
3.     i = 0; j = 9;
4.     do {
5.             k =  (i + j) /2;
6.             if( Y[k] < x)  i = k; else j = k;
7.         } while(Y[k] != x && i < j);
8.     if(Y[k] == x) printf ("x is in the array ") ;
9.     else printf (" x is not in the array ") ;
10.  }
The correction needed in the program to make it work properly is
GATE CSE 2008
15
A binary search tree is generated by inserting in order the following integers:

50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24

The number of nodes in the left subtree and right subtree of the root respectively is
GATE CSE 1996
16
Obtain the optimal binary search tree with equal probabilities for the identifier set (a1, a2, a3) = ( if, stop, while)
GATE CSE 1991
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12