Calculus · Discrete Mathematics · GATE CSE
Marks 1
Let $f(x)$ be a continuous function from $\mathbb{R}$ to $\mathbb{R}$ such that
$f(x) = 1 - f(2 - x)$
Which one of the following options is the CORRECT value of $\int_0^2 f(x) dx$?
Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x) = \max \{x, x^3\}, x \in \mathbb{R}$, where $\mathbb{R}$ is the set of all real numbers. The set of all points where $f(x)$ is NOT differentiable is
Let $$f(x) = {x^3} + 15{x^2} - 33x - 36$$ be a real-valued function. Which of the following statements is/are TRUE?
The value of the definite integral
$$\int\limits_{ - 3}^3 {\int\limits_{ - 2}^2 {\int\limits_{ - 1}^1 {(4{x^2}y - {z^3})dz\,dy\,dx} } } $$
is ___________. (Rounded off to the nearest integer)
The value of the following limit is _____________.
$$\mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt x } \over {1 - {e^{2\sqrt x }}}}$$
Consider the following expression
$$\mathop {\lim }\limits_{x \to -3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}$$
The value of the above expression (rounded to 2 decimal places) is ______
I. $${e^{ - x}}$$
II. $${x^2} - \sin x$$
III. $$\sqrt {{x^3} + 1} $$
Which of the above functions is/are increasing everywhere in [0,1]?
$$f\left( \theta \right) = \left| {\matrix{ {\sin \,\theta } & {\cos \,\theta } & {\tan \,\theta } \cr {\sin \left( {{\pi \over 6}} \right)} & {\cos \left( {{\pi \over 6}} \right)} & {\tan \left( {{\pi \over 6}} \right)} \cr {\sin \left( {{\pi \over 3}} \right)} & {\cos \left( {{\pi \over 3}} \right)} & {\tan \left( {{\pi \over 3}} \right)} \cr } } \right|$$
Where $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ and $$f\left( \theta \right)$$ denote the derivative of $$f$$ with repect to $$\theta $$. Which of the following statements is/are TRUE?
$${\rm I})$$ There exists $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ such that $$f\left( \theta \right)$$ $$= 0$$.
$${\rm I}{\rm I})$$ There exists $$\theta \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$ such that $$f\left( \theta \right)$$ $$ \ne 0$$.
The value of $$\int\limits_0^3 {f\left( x \right)dx} $$ computed using the trapezoidal rule is
$$P.\,\,f\left( x \right)$$ is continuous for all real values of $$x$$
$$Q.\,\,f\left( x \right)$$ is differentiable for all real values of $$x$$
Which of the following is True?
Marks 2
where $$a \ne b$$ then $$\int\limits_1^2 {f\left( x \right)dx} \,$$ is
$${\rm I}.$$ $$f$$ is continuous in $$\left[ { - 1,1} \right]$$
$${\rm I}{\rm I}.$$ $$f$$ is not bounded in $$\left[ { - 1,1} \right]$$
$${\rm I}{\rm I}{\rm I}.$$ $${\rm A}$$ is nonzero and finite
$$f$$"$$\left( x \right) + f\left( x \right) + t\,\cos \,x\,\, = \,\,0$$. The value of $$t$$ is ______ .
$$f\left( x \right) = 2{x^2} - 2x + 6$$ in the interval $$\left[ {0,2} \right]$$?