1
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
Consider an instruction pipeline with four stages $$\left( {S1,\,S2,\,S3,} \right.$$ and $$\left. {S4} \right)$$ each with combinational circuit only. The pipeline registers are required between each stage and at the end of the last stage. Delays for the stages and for the pipeline registers are as given in the figure.
What is the approximate speed up of the pipeline in steady state under ideal conditions when compared to the corresponding non-pipeline implementation?
2
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
A $$5$$-stage pipelined processor has Instruction Fetch $$(IF),$$ Instruction Decode $$(ID),$$ Operand Fetch $$(OF),$$ Perform Operation $$(PO)$$ and Write Operand $$(WO)$$ stages. The $$IF, ID, OF$$ and $$WO$$ stages take $$1$$ clock cycle each for any instruction. The $$PO$$ stage takes $$1$$ clock cycle for $$ADD$$ and $$SUB$$ instructions, $$3$$ clock cycles for $$MUL$$ instruction, and $$6$$ clock cycles for $$DIV$$ instruction respectively. Operand forwarding is used in the pipeline. What is the number of clock cycles needed to execute the following sequence of instructions?
3
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider a $$4$$ stage pipeline processor. The number of cycles needed by the four instructions $${\rm I}1,$$ $${\rm I}2,$$ $${\rm I}3,$$ $${\rm I}4,$$ in stages $$S1, S2, S3, S4$$ is shown below.
What is the number of cycles needed to execute the following loop?
For $$\left( {i = 1} \right.$$ to $$\left. 2 \right)$$ $$\left\{ {{\rm I}1;{\rm I}2;{\rm I}3;{\rm I}4;} \right\}$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
The use of multiple register windows with overlap causes a reduction in the number of memory accesses for
$$1.\,\,\,\,$$ Function locals and parameters
$$2.\,\,\,\,$$ Register saves and restores
$$3.\,\,\,\,$$ Instruction fetches
$$1.\,\,\,\,$$ Function locals and parameters
$$2.\,\,\,\,$$ Register saves and restores
$$3.\,\,\,\,$$ Instruction fetches
Questions Asked from Pipelining (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (1)
GATE CSE 2022 (1)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (2)
GATE CSE 2020 (1)
GATE CSE 2018 (1)
GATE CSE 2016 Set 1 (1)
GATE CSE 2016 Set 2 (2)
GATE CSE 2015 Set 1 (1)
GATE CSE 2015 Set 3 (1)
GATE CSE 2015 Set 2 (1)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 1 (1)
GATE CSE 2013 (1)
GATE CSE 2011 (1)
GATE CSE 2010 (1)
GATE CSE 2009 (1)
GATE CSE 2008 (4)
GATE CSE 2007 (1)
GATE CSE 2006 (1)
GATE CSE 2005 (1)
GATE CSE 2004 (1)
GATE CSE 2002 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages