Set Theory & Algebra · Discrete Mathematics · GATE CSE

Start Practice

Marks 1

1

Let $P$ be the partial order defined on the set {1,2,3,4} as follows:

$P = \{(x, x) \mid x \in \{1,2,3,4\}\} \cup \{(1,2), (3,2), (3,4)\}$

The number of total orders on {1,2,3,4} that contain $P$ is _________.

GATE CSE 2024 Set 2
2

Let $A$ and $B$ be non-empty finite sets such that there exist one-to-one and onto functions (i) from $A$ to $B$ and (ii) from $A \times A$ to $A \cup B$. The number of possible values of $|A|$ is _______

GATE CSE 2024 Set 1
3

Consider the following sets, where n > 2:
S1: Set of all n x n matrices with entries from the set {a, b, c}

S2: Set of all functions from the set {0,1, 2, ..., n2 — 1} to the set {0, 1, 2}

Which of the following choice(s) is/are correct?

GATE CSE 2021 Set 2
4
Let G be a group of 35 elements. Then the largest possible size of a subgroup of G other than G itself is ______.
GATE CSE 2020
5
Let R be the set of all binary relations on the set {1,2,3}. Suppose a relation is chosen from R at random. The probability that the chosen relation is reflexive (round off to 3 decimal places) is _____.
GATE CSE 2020
6
Let G be an arbitrary group. Consider the following relations on G :

R1: ∀a,b ∈ G, aR1b if and only if ∃g ∈ G such that a = g-1bg

R2: ∀a,b ∈ G, aR2b if and only if a = b-1

Which of the above is/are equivalence relation/relations?
GATE CSE 2019
7
Let U = {1, 2 ,..., n}. Let A = {(x, X) | x ∈ X, X ⊆ U}. Consider the following two statements on |A|.

I. |A| = n2n–1

II. |A| = $$\sum\limits_{k = 1}^n {k\left( {\matrix{ n \cr k \cr } } \right)} $$

Which of the above statements is/are TRUE?
GATE CSE 2019
8
For a set A, the power set of A is denoted by 2A. If A = {5, {6}, {7}}, which of the following options are TRUE?

I. $$\phi \in {2^A}$$
II. $$\phi \subseteq {2^A}$$
III. $$\left\{ {5,\left\{ 6 \right\}} \right\} \in {2^A}$$
IV. $$\left\{ {5,\left\{ 6 \right\}} \right\} \subseteq {2^A}$$

GATE CSE 2015 Set 1
9
Suppose $$𝑈$$ is the power set of the set $$S = \left\{ {1,2,3,4,5,6,} \right\}$$. For any $$T \in U,$$ let $$\left| T \right|$$ denote the number of elements in $$𝑇$$ and $$T'$$ denote the complement of $$𝑇.$$ For any $$T,R \in U,$$ let $$T\backslash R$$ be the set of all elements in $$𝑇$$ which are not in $$𝑅.$$ Which one of the following is true?
GATE CSE 2015 Set 3
10
The cardinally of the power set of $$\left\{ {0,1,2,\,\,....,\,\,10} \right.\left. \, \right\}$$ is _____________.
GATE CSE 2015 Set 2
11
Let $$𝑅$$ be the relation on the set of positive integers such that $$aRb$$ if and only if $$𝑎 $$ and $$𝑏$$ are distinct and have a common divisor other than $$1.$$ Which one of the following statements about $$𝑅$$ is true?
GATE CSE 2015 Set 2
12
Let $$X$$ and $$Y$$ be finite sets and $$f:X \to Y$$ be a function. Which one of the following statements is TRUE?
GATE CSE 2014 Set 3
13
Which one of the following functions is continuous at $$x = 3$$?
GATE CSE 2013
14
A Binary operation $$ \oplus $$ on a set of integers is defined as $$x$$ $$ \oplus $$ $$y$$ $$ = {x^2} + {y^2}$$. Which one of the following statements is TRUE about $$ \oplus $$ ?
GATE CSE 2013
15
Consider the set $$S = \left\{ {1,\,\omega ,\,{\omega ^2}} \right\},$$ where $$\omega $$ and $${{\omega ^2}}$$, are cube roots of unity. If $$ * $$ denotes the multiplication operation, the structure $$\left\{ {S,\, * } \right\}$$ forms
GATE CSE 2010
16
What is the possible number of reflexive relations on a set $$5$$ elements?
GATE CSE 2010
17
Which one of the following in NOT necessarily a property of Group?
GATE CSE 2009
18
consider the binary relation $$R = \left\{ {\left( {x,y} \right),\,\left( {x,z} \right),\,\left( {z,x} \right),\,\left( {z,y} \right)} \right\}$$ on the set $$\left\{ {x,\,y,\,z} \right\}$$. which one of the following is TRUE?
GATE CSE 2009
19
If $$P, Q, R$$ are subsets of the universal set $$U$$, then
$$\left( {P \cap Q \cap R} \right) \cup \left( {{P^c} \cap Q \cap R} \right) \cup {Q^c} \cup {R^c}$$ is
GATE CSE 2008
20
What is the maximum number of different Boolean functions involving $$n$$ Boolean variables?
GATE CSE 2007
21
Let $$S$$ be a set6 of $$n$$ elements. The number of ordered pairs in the largest and the smallest equivalence relations on $$S$$ are
GATE CSE 2007
22
The set $$\left\{ {1,\,\,2,\,\,3,\,\,5,\,\,7,\,\,8,\,\,9} \right\}$$ under multiplication modulo 10 is not a group. Given below are four plausible reasons.

Which one of them is false?

GATE CSE 2006
23
For the set $$N$$ of natural numbers and a binary operation $$f:N \times N \to N$$, an element $$z \in N$$ is called an identity for $$f$$ if $$f\left( {a,z} \right) = a = f\left( {z,a} \right)$$ for all $$a \in N$$. Which of the following binary operations have an identify?
$${\rm I}$$) $$\,\,\,\,\,\,f\left( {x,y} \right) = x + y - 3$$
$${\rm I}{\rm I}$$ $$\,\,\,\,\,\,f\left( {x,y} \right) = {\mkern 1mu} \max \left( {x,y} \right)$$
$${\rm I}{\rm I}{\rm I}$$$$\,\,\,\,\,f\left( {x,y} \right) = \,{x^y}$$
GATE CSE 2006
24
Let $$X,. Y, Z$$ be sets of sizes $$x, y$$ and $$z$$ respectively. Let $$W = X x Y$$ and $$E$$ be the set of all subjects of $$W$$. The number of functions from $$Z$$ to $$E$$ is
GATE CSE 2006
25
A relation $$R$$ is defined on ordered pairs of integers as follows: $$\left( {x,y} \right)R\left( {u,v} \right)\,if\,x < u$$ and $$y > v$$. Then $$R$$ is
GATE CSE 2006
26
The set $$\left\{ {1,\,\,2,\,\,4,\,\,7,\,\,8,\,\,11,\,\,13,\,\,14} \right\}$$ is a group under multiplication modulo $$15$$. The inverse of $$4$$ and $$7$$ are respectively:
GATE CSE 2005
27
Let $$f$$ be a function from a set $$A$$ to a set $$B$$, $$g$$ a function from $$B$$ to $$C$$, and $$h$$ a function from $$A$$ to $$C$$, such that $$h\left( a \right) = g\left( {f\left( a \right)} \right)$$ for all $$a \in A$$. Which of the following statements is always true for all such functions $$f$$ and $$g$$?
GATE CSE 2005
28
The following is the Hasse diagram of the poset $$\left[ {\left\{ {a,b,c,d,e} \right\}, \prec } \right]$$

The poset is:

GATE CSE 2005 Discrete Mathematics - Set Theory & Algebra Question 39 English
GATE CSE 2005
29
Let $$A$$, $$B$$ and $$C$$ be non-empty sets and let $$X = (A - B) - C$$ and $$Y = (A - C) - (B - C)$$

Which one of the following is TRUE?

GATE CSE 2005
30
Consider the binary relation: $$S = \left\{ {\left( {x,y} \right)|y = x + 1\,\,and\,\,x,y \in \left\{ {0,1,2,...} \right\}} \right\}$$

The reflexive transitive closure of $$S$$ is

GATE CSE 2004
31
Let $${R_1}$$ be a relation from $$A = \left\{ {1,3,5,7} \right\}$$ to $$B = \left\{ {2,4,6,8} \right\}$$ and $${R_2}$$ be another relation from $$B$$ to $$C$$ $$ = \left\{ {1,2,3,4} \right\}$$ as defined below:

i) An element $$x$$ in $$A$$ is related to an element $$y$$ in $$B$$ (under $${R_1}$$) if $$ x + y $$ is divisible by $$3$$.
ii) An element EExEE in $$B$$ is related to an elements $$y$$ in $$C$$ (under $${R_2}$$) if $$x + y$$ is even but not divisible by $$3$$.

Which is the composite relation $$R1R2$$ from $$A$$ to $$C$$?

GATE CSE 2004
32
The number of different $$n$$ $$x$$ $$n$$ symmetric matrices with each elements being either $$0$$ or $$1$$ is (Note: power ($$2,$$ $$x$$) is same as $${2^x}$$)
GATE CSE 2004
33
Consider the following relations:
$${R_1}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left( {a + b} \right)$$ is even over the set of integers
$${R_2}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left( {a + b} \right)$$ is odd over the set of integers
$${R_3}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,a.b > 0$$ over the set of non-zero rational numbers
$${R_4}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left| {a - b} \right| \le 2$$ over the set of natural numbers

Which of the following statements is correct?

GATE CSE 2001
34
The number of binary relations on a set with $$n$$ elements is:
GATE CSE 1999
35
Let $${R_1}$$ and $${R_2}$$ be two equivalence relations on a set. Consider the following assertions:

(i)$$\,\,\,\,{R_1} \cup {R_2}$$ is an euivalence relation
(ii)$$\,\,\,\,{R_1} \cap {R_2}$$ is an equivalence relation

Which of the following is correct?

GATE CSE 1998
36
Suppose $$A$$ is a finite set with $$n$$ elements. The number of elements in the Largest equivalence relation of $$A$$ is
GATE CSE 1998
37
The number of functions from an $$m$$ element set to an $$n$$ element set is
GATE CSE 1998
38
The number of equivalence relations on the set $$\left\{ {1,2,3,4} \right\}$$ is
GATE CSE 1997
39
Let $$A$$ and $$B$$ be sets and let $${A^c}$$ and $${B^c}$$ denote the complements of the sets $$A$$ and $$B$$. The set $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$ is equal to
GATE CSE 1996
40
Let $$X$$ $$X = \left\{ {2,3,6,12,24} \right\}$$. Let $$ \le $$ the partial order defined by $$x \le y$$ if $$x$$ divides $$y$$. The number of edges in the Hasse diagram of $$\left( {X, \le } \right)$$ is
GATE CSE 1996
41
Suppose $$X$$ and $$Y$$ are sets and $$\left| X \right|$$ and $$\left| Y \right|$$ are their respective cardinalities. It is given that there are exactly 97 functions from $$X$$ to $$Y$$. From this one can conclude that
GATE CSE 1996
42
Which of the following statements is false?
GATE CSE 1996
43
Let $$R$$ be a symmetric and transitive relation on a set $$A$$. Then
GATE CSE 1995
44
The number of elements in the power set $$P(S)$$ of the set $$S = \left\{ {\left\{ \phi \right\},1,\left\{ {2,3} \right\}} \right\}$$ is
GATE CSE 1995
45
Let $${\rm A}$$ be a finite set of size $$n$$. The number of elements in the power set of $${\rm A} \times {\rm A}$$ is
GATE CSE 1993
46
Let $$S$$ be an infinite set and $${S_1},\,\,{S_2},....\,\,{S_n}$$ be sets such that $${S_1} \cup {S_2} \cup ....... \cup {S_n} = S$$. Then
GATE CSE 1993
47
(a) How many binary relations are there on a set A with n elements?

(b) How many one - to - one functions are there from a set A with n elements onto itself

GATE CSE 1987
48
State whether the following statement are TRUE or FALSE:
(a) The union of two equivalence relations is also an equivalence relation.
GATE CSE 1987

Marks 2

1

Let Zn be the group of integers {0, 1, 2, ..., n − 1} with addition modulo n as the group operation. The number of elements in the group Z2 × Z3 × Z4 that are their own inverses is __________.

GATE CSE 2024 Set 2
2
Consider the operators $\diamond$ and $\square$ defined by $a \diamond b=a+2 b, a \square b=a b$, for positive integers. Which of the following statements is/are TRUE?
GATE CSE 2024 Set 1
3

Let $$f:A \to B$$ be an onto (or surjective) function, where A and B are nonempty sets. Define an equivalence relation $$\sim$$ on the set A as

$${a_1} \sim {a_2}$$ if $$f({a_1}) = f({a_2})$$,

where $${a_1},{a_2} \in A$$. Let $$\varepsilon = \{ [x]:x \in A\} $$ be the set of all the equivalence classes under $$\sim$$. Define a new mapping $$F:\varepsilon \to B$$ as

$$F([x]) = f(x)$$, for all the equivalence classes $$[x]$$ in $$\varepsilon $$.

Which of the following statements is/are TRUE?

GATE CSE 2023
4

Let X be a set and 2$$^X$$ denote the powerset of X. Define a binary operation $$\Delta$$ on 2$$^X$$ as follows:

$$A\Delta B=(A-B)\cup(B-A)$$.

Let $$H=(2^X,\Delta)$$. Which of the following statements about H is/are correct?

GATE CSE 2023
5
Let S be a set consisting of 10 elements. The number of tuples of the form (A, B) such that A and B are subsets of S, and A ⊆ B is _______
GATE CSE 2021 Set 2
6
A relation R is said to be circular if aRb and bRc together imply cRa. Which of the following options is/are correct?
GATE CSE 2021 Set 1
7
Let N be the set of natural numbers. Consider the following sets.

$$\,\,\,\,\,\,\,\,$$ $$P:$$ Set of Rational numbers (positive and negative)
$$\,\,\,\,\,\,\,\,$$ $$Q:$$ Set of functions from $$\left\{ {0,1} \right\}$$ to $$N$$
$$\,\,\,\,\,\,\,\,$$ $$R:$$ Set of functions from $$N$$ to $$\left\{ {0,1} \right\}$$
$$\,\,\,\,\,\,\,\,$$ $$S:$$ Set of finite subsets of $$N.$$

Which of the sets above are countable?

GATE CSE 2018
8
A function $$f:\,\,{N^ + } \to {N^ + },$$ defined on the set of positive integers $${N^ + },$$ satisfies the following properties: $$$\eqalign{ & f\left( n \right) = f\left( {n/2} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,even \cr & f\left( n \right) = f\left( {n + 5} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,odd \cr} $$$

Let $$R = \left\{ i \right.|\exists j:f\left( j \right) = \left. i \right\}$$ be the set of distinct values that $$f$$ takes. The maximum possible size of $$R$$ is _____________________.

GATE CSE 2016 Set 1
9
A binary relation $$R$$ on $$N \times N$$ is defined as follows: $$(a,b)R(c,d)$$ if $$a \le c$$ or $$b \le d.$$ Consider the following propositions:

$$P:$$ $$R$$ is reflexive
$$Q:$$ $$R$$ is transitive

Which one of the following statements is TRUE?

GATE CSE 2016 Set 2
10
Consider a set $$U$$ of $$23$$ different compounds in a Chemistry lab. There is a subset $$S$$ of $$U$$ of $$9$$ compounds, each of which reacts with exactly $$3$$ compounds of $$U.$$ Consider the following statements:

$$\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,$$ Each compound in $$U \ S$$ reacts with an odd number of compounds.
$$\,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,$$ At least one compound in $$U \ S$$ reacts with an odd number of compounds.
$$\,\,\,{\rm I}{\rm I}{\rm I}.\,\,\,\,\,$$ Each compound in $$U \ S$$ reacts with an even number of compounds.

Which one of the above statements is ALWAYS TRUE?

GATE CSE 2016 Set 2
11
Let $$R$$ be a relation on the set of ordered pairs of positive integers such that $$\left( {\left( {p,q} \right),\left( {r,s} \right)} \right) \in R$$ if and only if $$p - s = q - r.$$ Which one of the following is true about $$R$$?
GATE CSE 2015 Set 3
12
Let $$X$$ and $$Y$$ denote the sets containing $$2$$ and $$20$$ distinct objects respectively and $$𝐹$$ denote the set of all possible functions defined from $$X$$ to $$Y$$. Let $$f$$ be randomly chosen from $$F.$$ The probability of $$f$$ being one-to-one is ________.
GATE CSE 2015 Set 2
13
The number of onto functions (subjective functions) from set $$X = \left\{ {1,2,3,4} \right\}$$ to set $$Y = \left\{ {a,b,c} \right\}$$ is __________________.
GATE CSE 2015 Set 2
14
Consider the set of all functions $$f:\left\{ {0,\,1,.....,2014} \right\} \to \left\{ {0,\,1,.....,2014} \right\}$$ such that $$f\left( {f\left( i \right)} \right) = i,\,\,\,$$ for all $$0 \le i \le 2014.$$ Consider the following statements:
$$P$$. For each such function it must be the case that for every $$i$$, $$f\left( i \right) = i$$
$$Q$$. For each such function it must be the case that for some $$i$$, $$f\left( i \right) = 1$$
$$R$$. Each such function must be onto.

Which one of the following id CORRECT?

GATE CSE 2014 Set 3
15
There are two elements $$x, y$$ in a group $$\left( {G,\, * } \right)$$ such that every elements in the group can be written as a product of some number of $$x's$$ and $$y's$$ in some order. It is known that
$$x * x = y * y = x * y * x * y = y * x * y * x = e$$
where $$e$$ is the identity element. The maximum number of elements in such a group is ______.
GATE CSE 2014 Set 3
16
Consider the following relation on subsets of the set S integers between 1 and 2014. For two distinct subsets U and V of S we say U < V if the minimum element in the symmetric difference of the two setss is in U.

Consider the following two statements:
S1 There is a subset of S that is larger than every other subset. S2: There is a subset of S that is smaller than every other subset.
Which one of the following is CORRECT?

GATE CSE 2014 Set 2
17
Let S denote the set of all functions $$f:\,{\{ 0,\,1\} ^4}\, \to \,\{ 0,\,1\} $$. Denote by N the number of functions from S to the set {0, 1}. The value of $${\log _2}$$ $${\log _2}$$ N is___________________
GATE CSE 2014 Set 1
18
How many onto (or subjective) functions are there form an n-element $$(n\, \ge \,2)$$ set to a 2-element set ?
GATE CSE 2012
19
For the compositive table of a cyclic group shown below GATE CSE 2009 Discrete Mathematics - Set Theory & Algebra Question 34 English

Which one of the following choices is correct?

GATE CSE 2009
20
How many different non-isomorphic Abelian groups of order 4 are there?
GATE CSE 2007
21
Consider the set of (column) vectors defined by $$X = \,\{ \,x\, \in \,{R^3}\,\left| {{x_1}\, + \,{x_2}\, + \,{x_3} = 0} \right.$$, where $${x^T} = \,{[{x_1}\, + \,{x_2}\, + \,{x_3}]^T}\} .$$ Which of the following is TRUE?
GATE CSE 2007
22
Consider the following Hasse diagrams.
GATE CSE 2007 Discrete Mathematics - Set Theory & Algebra Question 40 English 1
GATE CSE 2007 Discrete Mathematics - Set Theory & Algebra Question 40 English 2
GATE CSE 2007 Discrete Mathematics - Set Theory & Algebra Question 40 English 3
GATE CSE 2007 Discrete Mathematics - Set Theory & Algebra Question 40 English 4

Which all of the above represent a lattice?

GATE CSE 2007
23
A partial order P is defined on the set of natural numbers as following. Herw x/y denotes integer division.
i) (0, 0) $$ \in \,P$$.
ii) (a, b) $$ \in \,P$$ if and only a %
$$10\, \le $$ b % 10 and
)a/10, b/10) $$ \in \,P$$.

Consider the following ordered pairs:
$$\matrix{ {i)\,\,\,(101,\,22)} & {ii)\,\,\,(22,\,\,101)} \cr {iii)\,\,\,(145,\,\,265)} & {iv)\,\,\,(0,\,153)} \cr } $$
Which of these ordered pairs of natural numbers are comtained in P?

GATE CSE 2007
24
Consider the set S = {a, b, c, d}. Consider the following 4 partitions $$\,{\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}$$ on $$S:\,{\pi _1} = \left\{ {\overline {a\,b\,c\,d} } \right\},\,{\pi _2} = \left\{ {\overline {a\,b\,} ,\,\overline {c\,d} } \right\},\,{\pi _3} = \left\{ {\overline {a\,b\,c\,} ,\,\overline d } \right\},\,{\pi _4} = \left\{ {\overline {a\,} ,\,\overline b ,\,\overline c ,\,\overline d } \right\}.$$ Let $$ \prec $$ be the partial order on the set of partitions $$S' = \{ {\pi _1},\,{\pi _2},\,{\pi _3},\,{\pi _4}\} $$ defined as follows: $${\pi _i} \prec \,\,{\pi _j}$$ if and only if $${\pi _i} $$ refines $${\pi _j}$$. The poset diagram for $$(S',\, \prec )$$ is
GATE CSE 2006
25
Let S = {1, 2, 3,....., m} , m > 3. Let $${X_1},\,....,\,{X_n}$$ be subsets of S each of size 3. Define a function f from S to the set of natural numbers as, f (i) is the number of sets $${X_j}$$ that contain the element i. That is $$f(i) = \left\{ {j\left| i \right.\,\, \in \,{X_j}} \right\}\left| . \right.$$

Then $$\sum\limits_{i - 1}^m {f\,(i)} $$ is

GATE CSE 2006
26
Given a set of elements N = {1, 2, ....., n} and two arbitrary subsets $$A\, \subseteq \,N\,$$ and $$B\, \subseteq \,N\,$$, how many of the n! permutations $$\pi $$ from N to N satisfy $$\min \,\left( {\pi \,\left( A \right)} \right) = \min \,\left( {\pi \,\left( B \right)} \right)$$, where min (S) is the smallest integer in the set of integers S, and $${\pi \,\left( S \right)}$$ is the set of integers obtained by applying permutation $${\pi}$$ to each element of S?
GATE CSE 2006
27
Let E, F and G be finite sets.
Let $$X = \,\left( {E\, \cap \,F\,} \right)\, - \,\left( {F\, \cap \,G\,} \right)$$
and $$Y = \,\left( {E\, - \left( {E\, \cap \,G} \right)} \right)\, - \,\left( {E\, - \,F\,} \right)$$. Which one of the following is true?
GATE CSE 2006
28
Let A be a set with n elements. Let C be a collection of distinct subsets of A such that for any two subsets $${S_1}$$ and $${S_2}$$ in C, either $${S_1}\, \subset \,{S_2}$$ or $${S_2}\, \subset \,{S_1}$$. What is the maximum cardinality of C?
GATE CSE 2005
29
Let R and S be any two equivalence relations on a non-emply set A. Which one of the following statements is TRUE?
GATE CSE 2005
30
Let f: $$\,B \to \,C$$ and g: $$\,A \to \,B$$ be two functions and let h = fog. Given that h is an onto function which one of the following is TRUE?
GATE CSE 2005
31
The inclusion of which of the following sets into

S = { {1, 2}, 1, 2, 3}, {1, 3, 5}, {1, 2, 4},
{1, 2, 3, 4, 5} }
Is necessary and sufficient to make S a complete lattice under the partial order defined by set containment?

GATE CSE 2004
32
The following is the incomplete operation table of a 4-element group. GATE CSE 2004 Discrete Mathematics - Set Theory & Algebra Question 102 English The last row of the table is
GATE CSE 2004
33
The binary relation $$S = \phi $$ (emply set) on set A = {1, 2, 3} is
GATE CSE 2002
34
Consider the following statements:

S1: There exist infinite sets A, B, C such that
$$A\, \cap \left( {B\, \cup \,C} \right)$$ is finite.
S2: There exist two irrational numbers x and y such that (x + y) is rational.
Which of the following is true about S1 and S2?

GATE CSE 2001
35
Let $$f:\,A\, \to B$$ be a function, and let E and F be subsets of A. Consider the following statements about images.

$$S1:\,f\,\left( {E\, \cup \,F} \right)\, = \,f\left( E \right)\, \cup \,f\,\left( F \right)$$
$$S2:\,f\,\left( {E\, \cap \,F} \right)\, = \,f\left( E \right)\, \cap \,f\,\left( F \right)$$
Which of the following is true about S1 and S2?

GATE CSE 2001
36
Let P(S) denote the power set of a set S. Which of the following is always true?
GATE CSE 2000
37
A relation R is defined on the set of integers as zRy if f (x + y) is even. Which of the following statements is true?
GATE CSE 2000
38

(a) Mr. X claims the following:
If a relation R is both symmetric and transitive, then R is reflexive. For this, Mr. X offers the following proof.

"From xRy, using symmetry we get yRx. Now because R is transitive, xRy and yRx togethrer imply xRx. Therefore, R is reflextive."


Briefly point out the flaw in Mr. X' proof.

(b) Give an example of a relation R which is symmetric and transitive but not reflexive.

GATE CSE 1999
39
Let (A, *) be a semigroup. Furthermore, for every a and b in A, if $$a\, \ne \,b$$, then $$a\,*\,b \ne \,\,b\,*\,a$$.

(a) Show that for every a in A
a * a = a
(b) Show that for every a, b in A
a * b * a = a
(c) Show that for every a, b, c in A
a * b * c = a * c

GATE CSE 1998
40
The binary relation R = {(1, 1)}, (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4) } on the set A = { 1, 2, 3, 4} is
GATE CSE 1998
41
Suppose A = {a, b, c, d} and $${\Pi _1}$$ is the following partition of A

$${\Pi _1}\, = \,\{ \{ a,\,\,b,\,\,c\,\} \,,\,\{ d\} \,\} $$
(a) List the ordered pairs of the equivalence relations induced by $${\Pi _1}$$
(b) Draw the graph of the above equivalence relation.

GATE CSE 1998
42
Let R denote the set of real numbers. Let f: $$R\,x\,R \to \,R\,x\,R\,$$ be a bijective function defined by f (x, y ) = (x + y, x - y). The inverse function of f is given by
GATE CSE 1996
43
Which one of the following is false?
GATE CSE 1996
44
Let R be a non-emply relation on a collection of sets defined by $${A^R}\,B $$ if and only if $$A\, \cap \,B\, = \,\phi $$. Then, (pick the true statement)
GATE CSE 1996
45
Let A be the set of all nonsingular matrices over real numbers and let * be the matrix multiplication operator. Then
GATE CSE 1995
46
Some group (G, o) is known to be abelian. Then, which one of the following is true for G?
GATE CSE 1994
47
The transitive closure of the relation
$$\left\{ {\left( {1,2} \right)\left( {2,3} \right)\left( {3,4} \right)\left( {5,4} \right)} \right\}$$
on the set $$A = \left\{ {1,2,3,4,5} \right\}$$ is ________ .
GATE CSE 1989
48
The complement(s) of the element 'a' in the lattice shown in Fig. is (are) ........... . GATE CSE 1988 Discrete Mathematics - Set Theory & Algebra Question 38 English
GATE CSE 1988

Marks 5

1
Let $$A$$ be a set of $$n\left( { > 0} \right)$$ elements. Let $${N_r}$$ be the number of binary relations on $$A$$ and Let $${N_r}$$ be the number of functions from $$A$$ to $$A$$.
(a) Give the expression for $${N_r}$$ in terms of $$n$$.
(b) Give the expression for $${N_f}$$ in terms of $$n$$.
(c) Which is larger for all possible $$n, $$ $${N_r}$$ or $${N_f}$$?
GATE CSE 2002
2
(a) $$S = \left\{ { < 1,2 > ,\, < 2,1 > } \right\}$$ is binary relation on set $$A = \left\{ {1,2,3} \right\}$$. Is it irreflexive?
Add the minimumnumber of ordered pairs to $$S$$ to make it an $$\,\,\,\,\,$$equivalence relation. Give the modified $$S$$.

(b) Let $$S = \left\{ {a,\,\,b} \right\}\,\,\,\,$$ and let ▢ $$S$$ be the power set of $$S$$. Consider the binary relation $$'\underline \subset $$ (set inclusion)' on ▢ $$S$$. Draw the Hasse diagram corresponding to the lattice (▢$$(S)$$, $$\underline \subset $$)

GATE CSE 2002
3
A multiset is an unordered collection of elements where elements may repeat ay number of times. The size of a multiset is the number of elements in it counting repetitions.

(a) what is the number of multisets of size 4 that can be constructed from n distinct elements so that at least one element occurs exactly twice?
(b) How many multisets can be constructed from n distinct elements?

GATE CSE 2000
4
Let $$S = \left\{ {0,1,2,3,4,5,6,7} \right\}$$ and $$ \otimes $$ denote multiplication modulo $$8$$, that is, $$x \otimes y = \left( {xy} \right)$$ mod $$8$$

(a) Prove that $$\left( {0,\,1,\, \otimes } \right)$$ is not a group.
(b) Write $$3$$ distinct groups $$\left( {G,\,\, \otimes } \right)$$ where $$G \subset s$$ and $$G$$ has $$2$$ $$\,\,\,\,\,\,$$elements.

GATE CSE 2000
5
Let $${G_1}$$ and $${G_2}$$ be subgroups of a group $$G$$.
(a) Show that $${G_1}\, \cap \,{G_2}$$ is also a subgroup of $$G$$.
(b) $${\rm I}$$s $${G_1}\, \cup \,{G_2}$$ always a subgroup of $$G$$?
GATE CSE 1995
6
(a) If G is a group of even order, then
show that there exists an element $$a \ne e$$,
the identifier $$g$$, such that
$${a^2} = e$$

(b) Consider the set of integers $$\left\{ {1,2,3,4,6,8,12,24} \right\}$$ together with the two binary operations LCM (lowest common multiple) and GCD (greatest common divisor). Which of the following algebraic structures does this represent?
i) Group ii) ring
iii) field iv) lattice
Justify your answer

GATE CSE 1992
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12