1
GATE ECE 1996
Subjective
+5
-0
A signal 3 sin $$\left( {\pi \,\,{f_0}t} \right) + \,5\,\,\cos \,\,\,(3\pi \,\,{f_0}t)$$ is applied to an RC low pass filter of 3 dB cutoff frequency $${f_0}$$. Determine and plot the output power spectrum and aslo calculate the total input and output normalized power.
2
GATE ECE 1994
Subjective
+5
-0
A signal, f(t) = $${e^{ - at}}$$ u(t), where u(t) is the unit step function, is applied to the input of a low-pass filter having $$\left| {H(\omega )} \right| = {b \over {\sqrt {{\omega ^2} + {b^2}} }}$$.
Calculate the value of the ratio, $${a \over b}$$, for which 50% of the input signal energy is transferred to the output.
3
GATE ECE 1993
Subjective
+5
-0
Obtain an expression for the signal in figure, for the signal $${v_3}(t)$$ in Fig for $${v_1}(t) = 100\cos (2000\pi t) + 4\sin (200\pi t)$$. Assume that $${v_2}(t)$$=$${v_1}(t)$$+0.1 $$v_1^2(t)$$ and that the BPF is an ideal unity gain filter with pass band from 800 Hz to 1200 Hz.
Questions Asked from Transmission of Signal Through Continuous Time LTI Systems (Marks 5)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics