1
JEE Advanced 2021 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
For any complex number w = c + id, let $$\arg (w) \in ( - \pi ,\pi ]$$, where $$i = \sqrt { - 1} $$. Let $$\alpha$$ and $$\beta$$ be real numbers such that for all complex numbers z = x + iy satisfying $$\arg \left( {{{z + \alpha } \over {z + \beta }}} \right) = {\pi \over 4}$$, the ordered pair (x, y) lies on the circle $${x^2} + {y^2} + 5x - 3y + 4 = 0$$, Then which of the following statements is (are) TRUE?
2
JEE Advanced 2021 Paper 1 Online
Numerical
+4
-0
For x $$\in$$ R, the number of real roots of the equation $$3{x^2} - 4\left| {{x^2} - 1} \right| + x - 1 = 0$$ is ________.
Your input ____
3
JEE Advanced 2021 Paper 1 Online
Numerical
+4
-0
In a triangle ABC, let AB = $$\sqrt {23} $$, BC = 3 and CA = 4. Then the value of $${{\cot A + \cot C} \over {\cot B}}$$ is _________.
Your input ____
4
JEE Advanced 2021 Paper 1 Online
Numerical
+4
-0
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and $$\overrightarrow v $$ are unit vectors which are not perpendicular to each other and $$\overrightarrow u $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow v $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow w $$ . $$\overrightarrow w $$ = 4
If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
Your input ____
Paper analysis
Total Questions
Chemistry
19
Mathematics
19
Physics
19
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978