1
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The following integral $$\int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\left( {2\cos ec\,\,x} \right)}^{17}}dx} $$ is equal to
A
$$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}\,du} $$
B
$$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} + {e^{ - u}}} \right)}^{17}}\,du} $$
C
$$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} - {e^{ - u}}} \right)}^{17}}\,du} $$
D
$$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} - {e^{ - u}}} \right)}^{16}}\,du} $$
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
List - $$I$$
P.$$\,\,\,\,$$ The number of polynomials $$f(x)$$ with non-negative integer coefficients of degree $$ \le 2$$, satisfying $$f(0)=0$$ and $$\int_0^1 {f\left( x \right)dx = 1,} $$ is
Q.$$\,\,\,\,$$ The number of points in the interval $$\left[ { - \sqrt {13} ,\sqrt {13} } \right]$$
at which $$f\left( x \right) = \sin \left( {{x^2}} \right) + \cos \left( {{x^2}} \right)$$ attains its maximum value, is
R.$$\,\,\,\,$$ $$\int\limits_{ - 2}^2 {{{3{x^2}} \over {\left( {1 + {e^x}} \right)}}dx} $$ equals
S.$$\,\,\,\,$$ $${{\left( {\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)} \over {\left( {\int\limits_0^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)}}$$

List $$II$$
1.$$\,\,\,\,$$ $$8$$
2.$$\,\,\,\,$$ $$2$$
3.$$\,\,\,\,$$ $$4$$
4.$$\,\,\,\,$$ $$0$$

A
$$P = 3,Q = 2,R = 4,S = 1$$
B
$$P = 2,Q = 3,R = 4,S = 1$$
C
$$P = 3,Q = 2,R = 1,S = 4$$
D
$$P = 2,Q = 3,R = 1,S = 4$$
3
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt} $$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g'\left( {{1 \over 2}} \right)$$ is

A
$${\pi \over 2}$$
B
$$\pi $$
C
$$-{\pi \over 2}$$
D
$$0$$
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt} $$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g\left( {{1 \over 2}} \right)$$ is

A
$$\pi $$
B
$$2\pi $$
C
$${\pi \over 2}$$
D
$${\pi \over 4}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12