$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List-$$I$$
(P.)$$\,\,\,\,$$ Let $$y\left( x \right) = \cos \left( {3{{\cos }^{ - 1}}x} \right),x \in \left[ { - 1,1} \right],x \ne \pm {{\sqrt 3 } \over 2}.$$ Then $${1 \over {y\left( x \right)}}\left\{ {\left( {{x^2} - 1} \right){{{d^2}y\left( x \right)} \over {d{x^2}}} + x{{dy\left( x \right)} \over {dx}}} \right\}$$ equals
(Q.)$$\,\,\,\,$$ Let $${A_1},{A_2},....,{A_n}\left( {n > 2} \right)$$ be the vertices of a regular polygon of $$n$$ sides with its centre at the origin. Let $${\overrightarrow {{a_k}} }$$ be the position vector of the point $${A_k},k = 1,2,......,n.$$
$$$f\left| {\sum\nolimits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} \times \overrightarrow {{a_{k + 1}}} } \right)} } \right| = \left| {\sum\limits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} .\,\overrightarrow {{a_{k + 1}}} } \right)} } \right|,$$$
then the minimum value of $$n$$ is
(R.)$$\,\,\,\,$$ If the normal from the point $$P(h, 1)$$ on the ellipse $${{{x^2}} \over 6} + {{{y^2}} \over 3} = 1$$ is perpendicular to the line $$x+y=8,$$ then the value of $$h$$ is
(S.)$$\,\,\,\,$$ Number of positive solutions satisfying the equation $${\tan ^{ - 1}}\left( {{1 \over {2x + 1}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {4x + 1}}} \right) = {\tan ^{ - 1}}\left( {{2 \over {{x^2}}}} \right)$$ is
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$List-$$II$$
(1.)$$\,\,\,\,$$ $$1$$
(2.)$$\,\,\,\,$$ $$2$$
(3.)$$\,\,\,\,$$ $$8$$
(4.)$$\,\,\,\,$$ $$9$$
The probability that $${x_1},$$, $${x_2},$$ $${x_3}$$ are in an arithmetic progression, is
The probability that $${x_1} + {x_2} + {x_3}$$ is odd, is