1
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The common tangents to the circle $${x^2} + {y^2} = 2$$ and the parabola $${y^2} = 8x$$ touch the circle at the points $$P, Q$$ and the parabola at the points $$R$$, $$S$$. Then the area of the quadrilateral $$PQRS$$ is
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$a, r, s, t$$ be nonzero real numbers. Let $$P\,\,\left( {a{t^2},2at} \right),\,\,Q,\,\,\,R\,\,\left( {a{r^2},2ar} \right)$$ and $$S\,\,\left( {a{s^2},2as} \right)$$ be distinct points on the parabola $${y^2} = 4ax$$. Suppose that $$PQ$$ is the focal chord and lines $$QR$$ and $$PK$$ are parallel, where $$K$$ is the point $$(2a,0)$$
The value of $$r$$ is
3
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The function $$y=f(x)$$ is the solution of the differential equation
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
$${{dy} \over {dx}} + {{xy} \over {{x^2} - 1}} = {{{x^4} + 2x} \over {\sqrt {1 - {x^2}} }}\,$$ in $$(-1,1)$$ satisfying $$f(0)=0$$.
Then $$\int\limits_{ - {{\sqrt 3 } \over 2}}^{{{\sqrt 3 } \over 2}} {f\left( x \right)} \,d\left( x \right)$$ is
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f:\left[ {0,2} \right] \to R$$ be a function which is continuous on $$\left[ {0,2} \right]$$ and is differentiable on $$(0,2)$$ with $$f(0)=1$$. Let
$$F\left( x \right) = \int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)dt} $$ for $$x \in \left[ {0,2} \right]$$. If $$F'\left( x \right) = f'\left( x \right)$$ for all $$x \in \left[ {0,2} \right]$$, then $$F(2)$$ equals
$$F\left( x \right) = \int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)dt} $$ for $$x \in \left[ {0,2} \right]$$. If $$F'\left( x \right) = f'\left( x \right)$$ for all $$x \in \left[ {0,2} \right]$$, then $$F(2)$$ equals
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978