1
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Perpendiculars are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+$ $z=3$. The foot of perpendiculars lie on the line
2
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
For $$a > b > c > 0,$$ the distance between $$(1, 1)$$ and the point of intersection of the lines $$ax + by + c = 0$$ and $$bx + ay + c = 0$$ is less than $$\left( {2\sqrt 2 } \right)$$. Then
3
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
A vertical line passing through the point $$(h,0)$$ intersects the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$ at the points $$P$$ and $$Q$$. Let the tangents to the ellipse at $$P$$ and $$Q$$ meet at the point $$R$$. If $$\Delta \left( h \right)$$$$=$$ area of the triangle $$PQR$$, $${{\Delta _1}}$$ $$ = \mathop {\max }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$ and $${{\Delta _2}}$$ $$ = \mathop {\min }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$, then $${8 \over {\sqrt 5 }}{\Delta _1} - 8{\Delta _2} = $$
Your input ____
4
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+2
-0.5
The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$ is
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978