1
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let complex numbers $$\alpha \,and\,{1 \over {\overline \alpha }}\,$$ lie on circles $${\left( {x - {x_0}} \right)^2} + \,\,{\left( {y - {y_0}} \right)^2} = {r^2}$$ and $$\,{\left( {x - {x_0}} \right)^2} + \,\,{\left( {y - {y_0}} \right)^2} = 4{r^2}$$ respextively. If $${z_0} = {x_0} + i{y_0}$$ satisfies the equation $$2{\left| {{z_0}} \right|^2}\, = {r^2} + 2,\,then\,\left| a \right| = $$
A
$${1 \over {\sqrt 2 }}$$
B
$${1 \over 2}\,$$
C
$${1 \over {\sqrt 7 }}$$
D
$${1 \over 3}$$
2
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The number of points in $$\left( { - \infty \,\infty } \right),$$ for which $${x^2} - x\sin x - \cos x = 0,$$ is
A
6
B
4
C
2
D
0
3
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
The coefficient of three consecutive terms of $${\left( {1 + x} \right)^{n + 5}}$$ are in the ratio $$5:10:14.$$ Then $$n$$ =
Your input ____
4
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
Consider the set of eight vectors $$V = \left\{ {a\,\hat i + b\,\hat j + c\hat k:a,\,b,\,c\, \in \left\{ { - 1,\,1} \right\}} \right\}$$. Three non-coplanar vectors can be chosen from v in $${2^p}$$ ways. Then p is
Your input ____
JEE Advanced Papers
EXAM MAP