1
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The area enclosed by the curves $$y = \sin x + {\mathop{\rm cosx}\nolimits} $$ and $$y = \left| {\cos x - \sin x} \right|$$ over the interval $$\left[ {0,{\pi \over 2}} \right]$$ is
A
$$4\left( {\sqrt 2 - 1} \right)$$
B
$$2\sqrt 2 \left( {\sqrt 2 - 1} \right)$$
C
$$2\left( {\sqrt 2 + 1} \right)$$
D
$$2\sqrt 2 \left( {\sqrt 2 + 1} \right)$$
2
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f$$ $$:\,\,\left[ {{1 \over 2},1} \right] \to R$$ (the set of all real number) be a positive,
non-constant and differentiable function such that
$$f'\left( x \right) < 2f\left( x \right)$$ and $$f\left( {{1 \over 2}} \right) = 1.$$ Then the value of $$\int\limits_{1/2}^1 {f\left( x \right)} \,dx$$ lies in the interval
A
$$\left( {2e - 1,2e} \right)$$
B
$$\left( {e - 1,\,2e - 1} \right)$$
C
$$\left( {{{e - 1} \over 2},e - 1} \right)$$
D
$$\left( {0,{{e - 1} \over 2}} \right)$$
3
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
A curve passes through the point $$\left( {1,{\pi \over 6}} \right)$$. Let the slope of
the curve at each point $$(x,y)$$ be $${y \over x} + \sec \left( {{y \over x}} \right),x > 0.$$
Then the equation of the curve is
A
$$sin\left( {{y \over x}} \right) = \log x + {1 \over 2}$$
B
$$cos\,ec\left( {{y \over x}} \right) = \log x + 2$$
C
$$\,s\,ec\left( {{{2y} \over x}} \right) = \log x + 2\,$$
D
$$\,cos\left( {{{2y} \over x}} \right) = \log x + {1 \over 2}$$
4
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Four persons independently solve a certain problem correctly with probabilities $${1 \over 2},{3 \over 4},{1 \over 4},{1 \over 8}.$$ Then the probability that the problem is solved correctly by at least one of them is
A
$${{235} \over {256}}$$
B
$${{21} \over {256}}$$
C
$${{3} \over {256}}$$
D
$${{253} \over {256}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12