1
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
Of the three independent events $${E_1},{E_2}$$ and $${E_3},$$ the probability that only $${E_1}$$ occurs is $$\alpha ,$$ only $${E_2}$$ occurs is $$\beta $$ and only $${E_3}$$ occurs is $$\gamma .$$ Let the probability $$p$$ that none of events $${E_1},{E_2}$$ or $${E_3}$$ occurs satisfy the equations $$\left( {\alpha -2\beta } \right)p = \alpha \beta $$ and $$\left( {\beta - 3\gamma } \right)p = 2\beta \gamma .$$ All the given probabilities are assumed to lie in the interval $$(0, 1)$$.
Then $${{\Pr obability\,\,of\,\,occurrence\,\,of\,\,{E_1}} \over {\Pr obability\,\,of\,\,occurrence\,\,of\,\,{E_3}}}$$
Your input ____
2
JEE Advanced 2013 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
A line $$l$$ passing through the origin is perpendicular to the lines
$$$\,{l_1}:\left( {3 + t} \right)\widehat i + \left( { - 1 + 2t} \right)\widehat j + \left( {4 + 2t} \right)\widehat k,\,\,\,\,\, - \infty < t < \infty $$$
$$${l_2}:\left( {3 + 2s} \right)\widehat i + \left( {3 + 2s} \right)\widehat j + \left( {2 + s} \right)\widehat k,\,\,\,\,\, - \infty < s < \infty $$$
Then, the coordinate(s) of the points(s) on $${l_2}$$ at a distance of $$\sqrt {17} $$ from the point of intersection of $$l$$ and $${l_1}$$ is (are)
Then, the coordinate(s) of the points(s) on $${l_2}$$ at a distance of $$\sqrt {17} $$ from the point of intersection of $$l$$ and $${l_1}$$ is (are)
3
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $\overrightarrow{\mathrm{PR}}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $ \overrightarrow{\mathrm{SQ}}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram $P Q R S$ and $\overrightarrow{\mathrm{PT}}=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelopiped determined by the vectors $\overrightarrow{\mathrm{PT}}, \overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$ is :
4
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
A uniform circular disc of mass 50 kg and radius 0.4 m is rotating with an angular velocity of 10 rad s-1
about its own axis, which is vertical. Two uniform circular rings, each of mass 6.25 kg and radius 0.2 m,
are gently placed symmetrically on the disc in such a manner that they are touching each other along the
axis of the disc and are horizontal. Assume that the friction is large enough such that the rings are at rest
relative to the disc and the system rotates about the original axis. The new angular velocity (in rad s-1
) of the system is
Your input ____
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978