1
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+2
-0.5
The circle passing through the point (-1, 0) and touching the y-axis at (0, 2) also passes through the point.
2
IIT-JEE 2011 Paper 2 Offline
Numerical
+2
-0
The straight line 2x - 3y = 1 divides the circular region $${x^2}\, + \,{y^2}\, \le \,6$$ into two parts.
If $$S = \left\{ {\left( {2,\,{3 \over 4}} \right),\,\left( {{5 \over 2},\,{3 \over 4}} \right),\,\left( {{1 \over 4} - \,{1 \over 4}} \right),\,\left( {{1 \over 8},\,{1 \over 4}} \right)} \right\}$$ then the number of points (s) in S lying inside the smaller part is
If $$S = \left\{ {\left( {2,\,{3 \over 4}} \right),\,\left( {{5 \over 2},\,{3 \over 4}} \right),\,\left( {{1 \over 4} - \,{1 \over 4}} \right),\,\left( {{1 \over 8},\,{1 \over 4}} \right)} \right\}$$ then the number of points (s) in S lying inside the smaller part is
Your input ____
3
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Let $$(x, y)$$ be any point on the parabola $${y^2} = 4x$$. Let $$P$$ be the point that divides the line segment from $$(0, 0)$$ to $$(x, y)$$ in the ratio $$1 : 3$$. Then the locus of $$P$$ is
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Let $$P(6, 3)$$ be a point on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. If the normal at the point $$P$$ intersects the $$x$$-axis at $$(9, 0)$$, then the eccentricity of the hyperbola is
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978