1
IIT-JEE 2011 Paper 2 Offline
Numerical
+4
-0
Let $$\overrightarrow a = - \widehat i - \widehat k,\overrightarrow b = - \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i + 2\widehat j + 3\widehat k$$ be three given vectors. If $$\overrightarrow r $$ is a vector such that $$\overrightarrow r \times \overrightarrow b = \overrightarrow c \times \overrightarrow b $$ and $$\overrightarrow r .\overrightarrow a = 0,$$ then the value of $$\overrightarrow r .\overrightarrow b $$ is
Your input ____
2
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
If $$\mathop {\lim }\limits_{x \to 0} {[1 + x\ln (1 + {b^2})]^{1/x}} = 2b{\sin ^2}\theta $$, $$b > 0$$ and $$\theta \in ( - \pi ,\pi ]$$, then the value of $$\theta$$ is
3
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let f(x) = x2 and g(x) = sin x for all x $$\in$$ R. Then the set of all x satisfying $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$, where $$(f \circ g)(x) = f(g(x))$$, is
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$\omega$$ $$\ne$$ 1 be a cube root of unity and S be the set of all non-singular matrices of the form $$\left[ {\matrix{ 1 & a & b \cr \omega & 1 & c \cr {{\omega ^2}} & \omega & 1 \cr } } \right]$$, where each of a, b, and c is either $$\omega$$ or $$\omega$$2. Then the number of distinct matrices in the set S is
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978