1
IIT-JEE 2011 Paper 2 Offline
Numerical
+4
-0
Let $$\overrightarrow a = - \widehat i - \widehat k,\overrightarrow b = - \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i + 2\widehat j + 3\widehat k$$ be three given vectors. If $$\overrightarrow r $$ is a vector such that $$\overrightarrow r \times \overrightarrow b = \overrightarrow c \times \overrightarrow b $$ and $$\overrightarrow r .\overrightarrow a = 0,$$ then the value of $$\overrightarrow r .\overrightarrow b $$ is
Your input ____
2
IIT-JEE 2011 Paper 2 Offline
Numerical
+4
-0
Let $$y'\left( x \right) + y\left( x \right)g'\left( x \right) = g\left( x \right),g'\left( x \right),y\left( 0 \right) = 0,x \in R,$$ where $$f'(x)$$ denotes $${{df\left( x \right)} \over {dx}}$$ and $$g(x)$$ is a given non-constant differentiable function on $$R$$ with $$g(0)=g(2)=0.$$ Then the value of $$y(2)$$ is
Your input ____
3
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\mathop {\lim }\limits_{x \to 0} {[1 + x\ln (1 + {b^2})]^{1/x}} = 2b{\sin ^2}\theta $$, $$b > 0$$ and $$\theta \in ( - \pi ,\pi ]$$, then the value of $$\theta$$ is

A
$$ \pm {\pi \over 4}$$
B
$$ \pm {\pi \over 3}$$
C
$$ \pm {\pi \over 6}$$
D
$$ \pm {\pi \over 2}$$
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let f(x) = x2 and g(x) = sin x for all x $$\in$$ R. Then the set of all x satisfying $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$, where $$(f \circ g)(x) = f(g(x))$$, is

A
$$ \pm \sqrt {n\pi } ,\,n \in \{ 0,1,2,....\} $$
B
$$ \pm \sqrt {n\pi } ,\,n \in \{ 1,2,....\} $$
C
$${\pi \over 2} + 2n\pi ,\,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
D
$$2n\pi ,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12