1
IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

If $$f(x) = \left\{ {\matrix{ { - x - {\pi \over 2},} & {x \le - {\pi \over 2}} \cr { - \cos x} & { - {\pi \over 2} < x \le 0} \cr {x - 1} & {0 < x \le 1} \cr {\ln x} & {x > 1} \cr } } \right.$$, then

A
f(x) is continuous at x = $$-$$ $$\pi$$/2.
B
f(x) is not differentiable at x = 0.
C
f(x) is differentiable at x = 1.
D
f(x) is differentiable at x = $$-$$3/2.
2
IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

Let $$f:(0,1) \to R$$ be defined by $$f(x) = {{b - x} \over {1 - bx}}$$, where b is a constant such that $$0 < b < 1$$. Then

A
f is not invertible on (0, 1).
B
f $$\ne$$ f$$-$$1 on (0, 1) and $$f'(b) = {1 \over {f'(0)}}$$.
C
f = f$$-$$1 on (0, 1) and $$f'(b) = {1 \over {f'(0)}}$$.
D
f$$-$$1 is differentiable on (0, 1).
3
IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

Let L be a normal to the parabola y2 = 4x. If L passes through the point (9, 6), then L is given by

A
y $$-$$ x + 3 = 0
B
y + 3x $$-$$ 33 = 0
C
y + x $$-$$ 15 = 0
D
7 $$-$$ 2x + 12 = 0
4
IIT-JEE 2011 Paper 2 Offline
Numerical
+3
-1

Let M be a 3 $$\times$$ 3 matrix satisfying $$M\left[ {\matrix{ 0 \cr 1 \cr 0 \cr } } \right] = \left[ {\matrix{ { - 1} \cr 2 \cr 3 \cr } } \right]$$, $$M\left[ {\matrix{ 1 \cr { - 1} \cr 0 \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr { - 1} \cr } } \right]$$ and $$M\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr {12} \cr } } \right]$$. Then the sum of the diagonal entries of M is ___________.

Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12