1
IIT-JEE 2011 Paper 2 Offline
Numerical
+3
-1
Let M be a 3 $$\times$$ 3 matrix satisfying $$M\left[ {\matrix{ 0 \cr 1 \cr 0 \cr } } \right] = \left[ {\matrix{ { - 1} \cr 2 \cr 3 \cr } } \right]$$, $$M\left[ {\matrix{ 1 \cr { - 1} \cr 0 \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr { - 1} \cr } } \right]$$ and $$M\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr {12} \cr } } \right]$$. Then the sum of the diagonal entries of M is ___________.
Your input ____
2
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Match the statements given in Column I with the intervals/union of intervals given in Column II :
3
IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Which of the following statement(s) is/are correct?
4
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+2
-0.5
A wooden block performs $$SHM$$ on a frictionless surface with frequency, $${v_0}.$$ The block carries a charge $$+Q$$ on its surface . If now a uniform electric field $$\overrightarrow E $$ is switched- on as shown, then the $$SHM$$ of the block will be
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978