1
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0

Match the statements/expressions in Column I with the values given in Column II:

Column I Column II
(A) The number of solutions of the equation $$x{e^{\sin x}} - \cos x = 0$$ in the interval $$\left( {0,{\pi \over 2}} \right)$$ (P) 1
(B) Value(s) of $$k$$ for which the planes $$kx + 4y + z = 0,4x + ky + 2z = 0$$ and $$2x + 2y + z = 0$$ intersect in a straight line (Q) 2
(C) Value(s) of $$k$$ for which $$|x - 1| + |x - 2| + |x + 1| + |x + 2| = 4k$$ has integer solution(s) (R) 3
(D) If $$y' = y + 1$$ and $$y(0) = 1$$ then value(s) of $$y(\ln 2)$$ (S) 4
(T) 5

A
(A)$$\to$$(P); (B)$$\to$$(Q), (S); (C)$$\to$$(Q), (R), (S), (T); (D)$$\to$$(R)
B
(A)$$\to$$(T); (B)$$\to$$(Q), (S); (C)$$\to$$(Q), (S), (T); (D)$$\to$$(Q)
C
(A)$$\to$$(S); (B)$$\to$$(Q), (S); (C)$$\to$$(P), (R), (S), (T); (D)$$\to$$(R)
D
(A)$$\to$$(P); (B)$$\to$$(Q), (S); (C)$$\to$$(Q), (R), (T); (D)$$\to$$(S)
2
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0

Match the statements/expressions in Column I with the values given in Column II:

Column I Column II
(A) Root(s) of the expression $$2{\sin ^2}\theta + {\sin ^2}2\theta = 2$$ (P) $${\pi \over 6}$$
(B) Points of discontinuity of the function $$f(x) = \left[ {{{6x} \over \pi }} \right]\cos \left[ {{{3x} \over \pi }} \right]$$, where $$[y]$$ denotes the largest integer less than or equal to y (Q) $${\pi \over 4}$$
(C) Volume of the parallelopiped with its edges represented by the vectors $$\widehat i + \widehat j + \widehat i + 2\widehat j$$ and $$\widehat i + \widehat j + \pi \widehat k$$ (R) $${\pi \over 3}$$
(D) Angle between vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ where $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors satisfying $$\overrightarrow a + \overrightarrow b + \sqrt 3 \overrightarrow c = \overrightarrow 0 $$ (S) $${\pi \over 2}$$
(T) $$\pi $$

A
(A)$$\to$$(Q), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(Q); (D)$$\to$$(T)
B
(A)$$\to$$(R), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(P)
C
(A)$$\to$$(Q), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(R)
D
(A)$$\to$$(P), (S); (B)$$\to$$(Q), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(R)
3
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

A line with positive direction cosines passes through the point P(2, $$-$$1, 2) and makes equal angles with the coordinate axes. The line meets the plane $$2x + y + z = 9$$ at point Q. The length of the line segment PQ equals

A
$$1$$
B
$${\sqrt 2 }$$
C
$${\sqrt 3 }$$
D
$$2$$
4
IIT-JEE 2009 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2

If $${I_n} = \int\limits_{ - \pi }^\pi {{{\sin nx} \over {(1 + {\pi ^x})\sin x}}dx,n = 0,1,2,} $$ .... then

A
$${I_n} = {I_{n + 2}}$$
B
$$\sum\limits_{m = 1}^{10} {{I_{2m + 1}}} = 10\pi $$
C
$$\sum\limits_{m = 1}^{10} {{I_{2m}}} = 0$$
D
$${I_n} = {I_{n + 1}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12