1
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is

A
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 6}$$
B
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 3}$$
C
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 3}$$
D
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 6}$$
2
IIT-JEE 2009 Paper 2 Offline
Numerical
+3
-1
The smallest value of $$k$$, for which both the roots of the equation $$${x^2} - 8kx + 16\left( {{k^2} - k + 1} \right) = 0$$$ are real, distinct and have values at least 4, is
Your input ____
3
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

The locus of the orthocentre of the triangle formed by the lines

$$(1 + p)x - py + p(1 + p) = 0, $$

$$(1 + q)x - qy + q(1 + q) = 0$$

and $$y = 0$$, where $$p \ne q$$, is :

A
a hyperbola.
B
a parabola.
C
an ellipse.
D
a straight line.
4
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
A piece of wire is bent in the shape of a parabola y = kx2 (y-axis vertical) with a bead of mass m on it. The bead can slide on the wire without friction. It stays at the lowest point of the parabola when the wire is at rest. The wire is now accelerated parallel to the x-axis with a constant acceleration $$a$$. The distance of the new equilibrium position of the bead, where the bead can stays at rest with respect to the wire, from the y-axis is
A
$${a \over {gk}}$$
B
$${a \over {2gk}}$$
C
$${{2a} \over {gk}}$$
D
$${a \over {4gk}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12