1
IIT-JEE 2009 Paper 2 Offline
Numerical
+3
-1

If the function $$f(x) = {x^3} + {e^{x/2}}$$ and $$g(x) = {f^{ - 1}}(x)$$, then the value of $$g'(1)$$ is _________.

Your input ____
2
IIT-JEE 2009 Paper 2 Offline
Numerical
+3
-1
The smallest value of $$k$$, for which both the roots of the equation $$${x^2} - 8kx + 16\left( {{k^2} - k + 1} \right) = 0$$$ are real, distinct and have values at least 4, is
Your input ____
3
IIT-JEE 2009 Paper 2 Offline
Numerical
+3
-1
Let $$\left( {x,\,y,\,z} \right)$$ be points with integer coordinates satisfying the system of homogeneous equation: $$$\matrix{ {3x - y - z = 0} \cr { - 3x + z = 0} \cr { - 3x + 2y + z = 0} \cr } $$$

Then the number of such points for which $$x^2 + {y^2} + {z^2} \le 100$$ is

Your input ____
4
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is

A
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 6}$$
B
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 3}$$
C
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 3}$$
D
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 6}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12