1
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
$$f(x)$$ is cubic polynomial with $$f(2)=18$$ and $$f(1)=-1$$. Also $$f(x)$$ has local maxima at $$x=-1$$ and $$f'(x)$$ has local minima at $$x=0$$, then
A
the distance between $$(-1,2)$$ and (a$$f(a)$$) where $$x=a$$ is the point of local minima is $$2\sqrt 5 $$
B
$$f(x)$$ is increasing for $$x \in \left[ {1,2\sqrt 5 } \right]$$
C
$$f(x)$$ has local minima at $$x=1$$
D
the value of $$f(0)=15$$
2
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
Let $$f\left( x \right) = \left\{ {\matrix{ {{e^x},} & {0 \le x \le 1} \cr {2 - {e^{x - 1}},} & {1 < x \le 2} \cr {x - e,} & {2 < x \le 3} \cr } } \right.$$ and $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,x \in \left[ {1,3} \right]} $$
then $$g(x)$$ has
A
local maxima at $$x=1+In$$ $$2$$ and local minima at $$x=e$$
B
local maxima at $$x=1$$ and local minima at $$x=2$$
C
no local maxima
D
no local minima
3
IIT-JEE 2006
Subjective
+6
-0
For a twice differentiable function $$f(x),g(x)$$ is defined as $$4\sqrt {65} g\left( x \right) = \left( {f'{{\left( x \right)}^2} + f''\left( x \right)} \right)\,\,f\left( x \right)$$ on $$\,\,\,\left[ {a,\,\,\,e} \right].$$ If for $$a < b < c < d < e,\,f\left( a \right) = 0,f\left( b \right) = 2,f\left( c \right) = - 1,f\left( d \right) = 2,f\left( e \right) = 0$$ then find the minimum number of zeros of $$g(x)$$.
4
IIT-JEE 2006
Subjective
+6
-0
The value of $$5050{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx} \over {\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx}}$$ is.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12