1
IIT-JEE 2006
MCQ (Single Correct Answer)
+5
-1.25
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

A line L' through A is drawn parallel to BD. Point S moves such that its distances from the BD and the vertex A are equal. If locus of S cuts L' at $$T_2$$ and $$T_3$$ and AC at $$T_1$$, then area of $$\Delta \,{T_1}\,{T_2}\,{T_3}$$ is

A
$${1 \over 2}\,sq.\,units$$
B
$${2 \over 3}\,sq.\,units$$
C
1 sq. units
D
2 sq.units
2
IIT-JEE 2006
MCQ (Single Correct Answer)
+5
-1.25
ABCD is a square of side length 2 units. $${C_1}$$ is the circle touching all the sides of the square ABCD and $${C_2}$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If P is any point of $${C_1}$$ and Q is another point on $${C_2}$$, then


$${{P{A^2}\, + \,P{B^2}\, + P{C^2}\, + P{D^2}} \over {Q{A^2} + \,Q{B^2}\, + Q{C^2}\, + Q{D^2}}}$$ is equal to
A
0.75
B
1.25
C
1
D
0.5
3
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
The axis of a parabola is along the line $$y = x$$ and the distances of its vertex and focus from origin are $$\sqrt 2 $$ and $$2\sqrt 2 $$ respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is
A
$${\left( {x + y} \right)^2} = \left( {x - y - 2} \right)$$
B
$${\left( {x - y} \right)^2} = \left( {x + y - 2} \right)$$
C
$${\left( {x - y} \right)^2} = 4\left( {x + y - 2} \right)$$
D
$${\left( {x - y} \right)^2} = 8\left( {x + y - 2} \right)$$
4
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
Let a hyperbola passes through the focus of the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1$$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the produced of eccentricities of given ellipse and hyperbola is $$1$$, then
A
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {16}} = 1$$
B
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {25}} = 1$$
C
focus of hyperbola is $$(5, 0)$$
D
vertex of hyperbola is $$\left( {5\sqrt 3 ,0} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12